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In the classical Black and Litterman approach, Bing reverse engineering, it is possible to
obtain the expected assets equilibrium returnsligadpn the weights of the market portfolio, i.e.
the benchmark. However, analysts may have diffewaws on some of the expected returns
implied in the benchmark’s weights and it is poksito obtain the posterior distribution by
combining analysts’ views and prior market inforroat

In this paper we propose a methodology for a sttess analysis of the current managed
portfolio, where two different shock types are camell. More precisely:

- we shock a set of factors which affect asset retumposing the analysts’ views on their
variation from the expected level;

- we assume that a mixture of normal distributiona dascribe the presence of hectic
periods and quiet period. The asset correlatiomloewvn effect is well known i.e., “.
joint distributions estimated over periods withganics will misestimate the degree of
correlation between asset returns during panitaldn Greenspai).

For this purpose, we introduce a number of macno@wic factors which affect asset returns such
as volatilities, interest rates, oil price etc.t,tiAis stage, we do not perform a multi factor gsisl,

but we include the information in the covariancetnra\We assume that a mixture of normal
distributions can describe the presence of hightilby periods and low volatility periods, taking
into account extreme movements in the market. Weveleghe conditional moments of the
posterior distribution by combining views on fag@nd market information.
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I ntroduction

Stress testing approaches differ among institutidas to the nature of the tested problem and the
way in which stress scenarios have been selectemhaBo tests can be constructed on the basis of
historical events (a crisis observed in the pdsbterical stress scenarios-, or on scenarios that
may be judged as possible in the future due tackl@ges of macroeconomic, socioeconomic or
political factors -prospective or hypothetical sgescenarios-.

Events, commonly used to build historical scersece the large U.S. stock market declines in
October 1987, the Asian financial crisis of 199& financial market fluctuations surrounding the
Russian default of 1998, and the financial marketetbpments following the September 11,
2001, terrorist attacks in the United States.

Prospective scenarios can be constructed accotdiag event-driven approach which identifies
the risk sources, or factors, which cause changeasset returns. By assuming large factors’
movements, it is possible to investigate how musk parameters change if such an event occurs.
Therefore, stress scenarios are based on plausitileinlikely events and are suitable for a
sensitivity analysis of the portfolio. Risk managetentify a portfolio's key financial drivers and
then formulate scenarios in which these driverssaessed.

One of the main problems in stress testing analgdise simulation of consistent scenarios which
are able to integrate historical and private infation and to preserve the correlation structure in
the data, as well as to capture direct effects @fements in the drivers and indirect effects due
to correlations among portfolio assets. An appaipriramework is provided by the Black and
Litterman[5,6,7] approach, which can be adaptestrwss testing. Cherubini and Della Lunga[9]
derive the expected value of the conditional disttion by imposing the views directly on asset
classes and evaluate non linear and leverage @usitiMeucci[24]assumes the presence of
normally distributed underlying factors and appltee model on options trading and portfolio
management problems. The underlying factors arenaly distributed and the P&L function
depends linearly or not linearly on these factors.

Acccording to the work of Madelbrot[20] and Famd[lI®any empirical studiés show that in
many cases, logaritmic returns are quite far fremd normally distributed, especially for high
frequency data. Recent papers[4,26,27], show thhtesParetian distributions are suitable for the
autoregressive portfolio return process in the &ark of asset allocation problem over a fixed
horizon. The classical Black and Litterman approashbased on Gaussian distribution
assumptions. Giacometti et al[16] investigatehipgothesis of non Gaussian distributions for the
prior and different market perceptions of risk e tderivation of equilibrium returns. In the
hypothesis of general distributions for the market the views, it is not possible to derive an
analytic solution for the posterior expected resurnd it is necessary to proceed by the
Montecarlo simulation ( see Meucci [23]).

Therefore Black and Litterman model maintaingajipeal among practitioners, since it permits to
obtain an analytic expression of the posterior etqgereturn. In order to preserve the structure
and the simplicity of the original Black and Littean model and, at the same time, to take in
account the empirical evidence of fat tails, weadtice a mixture of normal distributions. This
distribution is suitable to describe the presenicganying volatility periods - quiet periods and
hectic periods - in financial markets.

Many authors assume the presence of two regimi@sancial data. Chow et al.[10] recognize the
presence of two regimes and identify as outlieesrdturns with a distance from the mean greater
than a tolerance distance. They estimate two caweei matrices of the two samples (normal
returns and outliers) and compute the blended wves matrix as their linear combination.
Aragones and Blanco[1] assume three regimes anguencorrelation matrices in each of them,

3 See Embrechts et al. [12], Rachev and Mittnik [@idl the references therein, Mittnick and Paol@#tg,[Panorska
et al. [28], Tokat et al. [32], Tokat et al Schwdi@3].



classifying returns according to prefixed threskoldKim and Finger [18] suggest the use of a
mixture of bivariate normal distributions in order model core and peripherical assets and to
compute the conditional covariance matrix repeathg procedure for each peripherical asset.
Bee [2] extends the model to a multivariate mixtdigtribution. The introduction of a mixture of
normal distributions presents many advantages:
- it permits to avoid the ex-ante classification etiurns belonging to crisis or quiet periods,
- it permits to construct an integrated stress risklefling process (see Berkowitz[3] for a
discussion),
- it permits to overcome the limiting hypothesis afigSsian distribuions and to take into
account the presence of heavy tails.

In this paper we propose a methodology for a stestsanalysis of the current managed portfolio.
The general idea of our approach is that assetnetdepend on a number of financial or
macroeconomic “core” factors that act as driverseréfore, it is possible to stress asset returns by
imposing shocks in the drivérsWe model the presence of extreme movementsimérket, by
introducing a mixture of normal distributions an@& wompute the conditional moments of the
posterior distribution by combining shocks on fastand prior market information.

We derive the conditional sensitivity of the exmectsset returns to shocks in high/low volatile
regimes and the extra return w.r.t the benchmaake@ delta performance ) of each asset in the
managed portfolio.

The paper is organised as follows. In the firstagesiph we briefly describe the classical Black
and Litterman modelBL model hereaftgr in the second paragraph we describe how Eurizon
Capital SGR(Eurizon hereaftgrhas adopted the BL model for that if analysian order to
monitor the portfolio’s reaction to shocks. In thed paragraph we introduce a mixture of normal
distributions to properly take into account extremarket movements. Finally, we present
empirical results of the comparison between thgimad Eurizon model and the improved one.

1. Review of the classical Black and Litterman model

The BL model was mainly introduced to respond to fwoblems in asset allocation. The first is
the need to overcome the critical step of expecetdrn estimation, mainly critical for the
presence of estimation errors. The second is tleel m@ integrate subjective information, the
experts’ views, to the market information. The mailea of this approach is to extract the
equilibrium returns, given the Sharpe ratio, asréterns implicit in the benchmark. BL argues
that the only sensible definition of neutral retis the set of expected returns that would clear
the market if all investors had identical viewsthé Capital Asset Pricing Model holds and if the
market is in equilibrium, the weights based on madapitalizations are also the weights of the
optimal portfolio. Afterwards, , via reverse optiation, one can recover the equilibrium returns
(prior returns).The theoretical reason is thathi# bbenchmark is a good proxy for the market
portfolio, its composition is the solution of antiopization problem for a vector of unknown
equilibrium returns.

The equilibrium returndl of the stocks composing the benchmark, are obtaiyesolving the
unconstrained maximization problem faced by an stawewith quadratic utility function or by
assuming normally distributed retufns

*. This approach has been implemented by Domenigmatica and Paolo Protti and presented at thestQtiralta
formazione in finanza matematica” of the Universif Bologna in 2004. This approach is currentlgdiby Eurizon
Capital SGR.

® More precisely1 = 0.515x where) is the Sharpe ratio.



We consider a market of N assets whose returns@rmeally distributed. The expected returns
E(R) are assumed to be normally distribute(R) ~ N(IT, aX) with the covariance matrix
proportional to the historical one, rescaled by hainkage factor; since uncertainty of the
mezén/main is lower than the uncertainty of retuhesnselves, the value af should be close to
zero.

The equilibrium returns provide a neutral referepot for asset allocation. In case there are no
views on market, there is no reason to deviate fittoenbenchmark (the benchmark is a proxy of
the equilibrium portfolio). However an active assefanager can deviate from the benchmark
tracking strategy, according to his/her econom@soaing in the tactical asset allocation. BL

model combines equilibrium returns with uncertaiews about expected returns.

Assume that we have k views, expressed with afdetear constraints (1).

(1) G=SE(R) + u, with aIN(0,Q ) and Cov(u,E(R))=0;

where

S is a matrix kN where each row corresponds to one view,

uis arandom vectordd of errors of the views.,

Q is the matrix kk containing the covariance, or uncertainty, ofvleavs.

The views are expressed on the expected returnsr@andormally distributed, so that the jointly
distribution is:

E[R M az azS
@ o g1llas as sal)

Using the Bayes’ Theorem, it is possible to gemeeavector of “posterior” returns for all asset
returns. In particular the conditional distributiohthe returns is:

[E(R |G = g] ~ N(ﬁ,i)
where

@) MN=M+a3S'(Saz S'Q I (g8
S=05-0a5S'(Saz S'Q § 9%

The investor's views have the effect of modifyirige tequilibrium returng1 according to the
degree of uncertainty. The greater the uncertathty|ess the deviation from neutral views.

The main results are that the views must not beesged for each asset and the conditional
expected returns do not suffer from typical protdeshcorner solution.

" We assume thatll is the expected value of the distribution of thepexted returns, following the original
formulation of Black and Litterman. In other appehas [22,23,24] the expected returns are assumied tonstant.
In both cases the analysis is similar and it issiiids to derive the conditional distribution of theturns given the
views and to compute the moments of the conditialisttibutions. In this paper we follow the origirglack and
Litterman approach.
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An assumption of the BL model is the normal disttibn of the uncertainty on the views. If all
views are independent, the covariance matrix igafial. However, in practice, it can be difficult
to specify the degree of confidence for each vidunore convenient approach is to consider that
Q is proportional to the assets volatility. The meoplatile is an asset, the more uncertain is the
view on its expected return. This can be easilyi@mgnted assuming that:

r
4) Q= (17) SazS <1,

The conditional expected return, i.e. the equilibrireturn adjusted by the views, can be easily
expressed as:

(5) N=n+ (1-7)=S' (S SY (g-8

We can observe that far0, the views are certainty views; forl the views are unreliable and

M=n.If Sis invertible, i.e. we have a number of kng independent views equal to the
number of assets, (5) becomes

(6) M=+ (1— Z') sl (g-F1

2. Black and Litterman model adapted/adopted for stresstesting analysis

Following the event-driven approach, the risk managdentify a portfolio's key financial drivers
and then formulate scenarios in which these drigegsstressed. In this section we explain how it
is possible to include factors in the original mioa&hout affecting asset returns in absence of
shocks and, at the same time, how we can shockrf&eind observe the effects on the asset
returns. This framework solves one of the main |enois in stress testing analysis i.e. the
simulation of consistent scenarios able to integtaistorical and private information and to
preserve the correlation structure in the dataydable to capture the direct effects of movements
in the driver and the indirect effects due to clatiens among the portfolio assets.

Starting from the classical BL model presentechim previous paragraph, we introduce K factors
which can influence the portfolio performance arelagsume that the percentage variations in the
factor are jointly normally distributed. Therefor¢he factors prior distribution is

E(F) ~ N(l_:,aZF). In order not to directly influence asset retum®& model centred factors,

E(F) -F~ N(0,a%; ) so that the expected variation of the factorauis n

We can express the multivariate distribution of thassets and the K factor as in (7), where the
covariance matrix is defined in terms of blocksslWway we explicitly isolate correlations among
the assets from the correlation among the exogefagtsrs and the cross correlations.

E(R) N||az, aZ.
—|~N ,
(7) {E(F) - F} ({ 0} L?’ZFR az D



Now, we assume that experts express views onhherfdctors, in terms of deviation from the
equilibrium level. In equilibrium views all are huln other words, the views are the shocks on the
factors.

The shocks are expressed as a set of linear cmtstra

®) G.=S(HP-P+u u N0, Sax$ € )

S is a matrix kF where each row corresponds to one shock,
uis arandom vectordd of errors of the shock,
Q is the matrix kk containing the covariance, or uncertainty, ofshecks.

If we don’t shock the factors we get the observistributions for asset return. When we expect
variations in the driver, we investigate the effect these variations in asset returns. The exgecte
value of the posterior distribution is:

EH E(R)—}IGfgpj{i} M+a%.S. (S0, $+Q) ¢

9) E(F)-F F az.S (s0z $+9)7 ¢

Since we are mainly interested in the reactionhefdsset returns to the factor shocks, we focus
our attention on the expected return (10)

(10) M=N+az,.S. (Saz. $+Q) g

We observe that assuming absence of shocks, a giam by a vector of zeros, we get the
unconditional equilibrium returns.
The extra return due to a shock can be easily ddaas:
M- =Hg,
(11) where
H=0%.S. (S0z, §+0)°

H contains all the information on the delta perfante of each single asset. Moreover, if we
assume Q =1/(1-1) SazS’, with 0<t<1, (11) becomes

, -1
(12) H=(-1)2eS: (S2, §)
We point out that:
1) given any differential composition of an actmanaged portfolio w.r.t. the benchmark, we can
compute the differential (portfolio/benchmark) inspasecurity by security, caused by the

factors’ shocks .

2) The covariance matrix of the asset returnsoisdirectly involved in the computation of the
delta performance. This result is extremely impadrtbecause it permits to disentangle the



assets correlation stress test from the factoneletion stress test. We can observe the effects
of large movements in the factors by assuming ttatelations among the factors are
unchanged; at a second stage we can stress tlaations of the factors and finally we can
stress the correlations of the returns as well.
3) When judging the usefulness of stress scenavits,has to take into account both the size of
the loss they cause and their plausibility[15,Zhce the factors are elliptically distributed, we
can compute the plausibility of a scenario by ushrggMahalanobis distance of a scenafdrgm
the present market situation. The square distah8p i¢ distributed as ®° with k degrees of
freedom, where k is the number of views.

(13) d*(ge) = 6 (T )T,

If the distance is zero, the plausibility is on@daas the distance increases the plausibility
decreases. We define the index of plausibility &%:)

(14) P(g) =1~ F. ) (c(g:))

Ideally we can consider plausible stress test sa@nat a determined confidence level p=5%,
which satisfies

(15) P(g:)= p

Finally, for each view we can compute the sensitiof the plausibility index to each marginal
shock:

(16) oP(g:) _ o(1- FXZ(k) ((1_ 1)9: (§2 $)° g)
ag; dg,

=21 . ([@*(G:))A-1)(S 2 $)7 ¢

This approach has been implemented and is curresdlgt by Eurizon Capital SGR
3. Stress testing analysis and extreme movements

Moving from this approach, we want to improve thetinodology presented so far along the line
of distributional assumption The model presentedthia previous section is based on the
assumption of normally distributed returns.

In order to preserve the structure of the origmaldel and include an heavy tail distribution we
assume that returns are generated from a finitéunaof multivariate normal distributions with S
components (see McLachlan and Basford [21] forauate discussion on mixture models).

an L00=2 T, (0 mOOY, =1

In particular, we assume that the density distitiubf assets and factors is a mixture of two
multivariate normal distributions (S=2). The prbbigy distribution function is:

8 The choice of two distributions in the mixturadise to the analysis explained in computationalltes



f
(18) {E(F)—E =M —@)

E(F)Y-F E(F)®-F

E(R)}('):”f{ E(R® }(')’L(l_ﬂ) f{ E(R® }(')

where

E R(l) Ny _Z:l) Zrt)
( )—(1) ~N {E(R( ) | o o with probability 77
E(F)-F 0 5. T

E(R }_
E(R)® 2)y |
( )_(2) ~N {E(RX ), ZZZ) z,; with probability 1- 77
E(F)-F 0 5. 3,

(18) [E(F)—E

The benefit of such a specification is that it aiothe possibility that occasionally the returns ar
generated from a distribution with a higher varmnaevhile simultaneously maintaining the
structure of normal densities. The mixture distiilmos of the factors lead to the mixture
distributions of the views:

GY ~N(0,§2 $)  with probabilityr
(20) ©F @ ¢
- G?~N(0,5% $)  with probabilitg- 77

We finally derive the conditional sensitivity ofetexpected asset returns to the views, reflecting
the reaction of the asset returns in low and higlatitity periods.

D HO=@-79s (s §)"

The delta performance is the linear combinatiotheftwo delta performances.

(22) H=mH® +(1-m)H®?

We can move further in our stress test analysisjeifbelieve that the historical returns do not
contain sufficient information to adequately stréss portfolio. In principle, we can apply two
different approaches: we can stress either thetiliids or the volatilities and the correlation

matrix. The first approach assumes that the cdroalanatrix estimated in hectic periods captures
the correlation breakdown effect adequately. Thiesstis applied uniquely on the volatility

vector. Let>? be the current estimated covariance matrix inibgmtriods. By decomposing
s®in 22 =v@'cv® we can stress volatilities as in (22) (see Kapid)).

(23) 52° = (D® +4)'CA(DP+4)
where

V@ is the K«1 vector of the factors volatility,
A is the K1 vector of the volatilities’ shocks,



C®?is the KxK correlations matrix.

The second approach is relevant for wieat if analysisand allows the introduction of specific
exogenous shocks in the factors correlation m@ffix of hectic periods. The shocked matrix

must be well specified i.e positive semi definEesven under this condition the complete stressed
correlation matrix may not be well specified (Fingg@4]). There are different approaches to
adjust the correlation matrix such as the shrink&gghnique, Kupiec [19], the hypershere
decomposition of Rebonato and Jackel[30] and thietiea of an unconstrained convex
optimisation problem to determine the nearest ggdicified correlation matrix, Qi ad Sun [29] .

3 Computational results

In this section we want to compare the two diffém@odels presented in this paper. In particular,
we consider:

- the Eurizon model presented in paragraph 3, (mbdel and a variation of it where we
substitute the estimated covariance matrix witlE®iMA covariance matrix (model 1.B),

- the mixture model presented in paragraph 4 (mod&) and a variation of it with an
additional stress of the covariance matrix (m&iBl): we increase the factors volatility in
hectic periods by 3 times their original value,@ding to (23).

The period of the analysis ranges from the begmwiin1996 to the end of 2008; many extreme
movements are present in the historical data, wimclude many financial crisis (the 1997 Bhat
crisis, and the 1998 Russian ruble crisis in Audi@88 followed by the collapse of a major hedge
fund (Long-term Capital Management) in Septemb&8]%he terrorist attack of September 11,
2001, and the subprime mortgage crisis that begatheé summer of 2007 and the subsequent
financial collapse in 2008.

We apply our model to a portfolio composed of tdremost capitalised shares of the S&P. We
rescale their weights in order to sum up to 1. M the new weights to construct a synthetic
benchmark. We consider as drivers 4 factors: &statex, the S&P, a bond index, RIX 10 year
future bund, and index of volatility, the VIX, aadcommodity, the Brent.

The analysis is performed on weekly returns in esaace to the Eurizon practice.

According to the Bera-Jarque and Kolmogoroff Smiirni@st, we strongly reject the null
hypothesis of normal distribution at the 5% sigrafice level. However, by using a rolling
window of 104 weeks for 80% of assets, we canrjetteéhe null hypothesis except for the last 20
weeks of the sample period, corresponding to thetmexent and deep financial crisis. For this
reason, we decide to compute the historical comaeianatrix of model 1.A on a rolling window
at 104 weeks (basically 2 years). The EWMA is cotegwon the complete data set wih0.94.
(model 1.B)

The maximum likelihood estimates of mixture disttibn parameters, are obtained by using the
EM algorithm (see Dempster et al.[11]). In tablenk report the Akaike Information Criterion
(AIC) and the Bayes Information Criterion (BIC) fdifferent numbers of components of mixture
distributions.

Number of components (S) AIC BIC

1 -3.9540 -3.9001
2 -4.0797 -3.9716
3 -4.0989 -3.9365




N

-4.1099 -3.8932

(62

-4.1123 -3.8412

Table 1 Information for different numbers of compats of the mixture (rescaled by 1.0e+4)

We conclude that S=2 (two components) is the nunth&r provides the best performance in
terms of BIS. The greatest marginal decrease ef AKC criterion is obtained with two
components. In order to determine a starting pfmnthe EM algorithm, we estimate a regime
switching model on the S&P data on the entire daperiod.

In table 2 we report the expected return and veedasf the two regimes (t-statistic in brackets).
Table 3 reports the transition matrix. The proligbdf remaining in state 1 (low volatility) and 2
(high volatility) is respectively 98% and 87%.

U o

State 1 0.0019 0.0189
(2.3017) (21.5757)

State 2 -0.0058 0.0491
(-1.0861) (9.2646)

Table 2 Parameters of the two regimes

Figure 1 shows the time series of the S&P, thegpimstdistributions of each weekly return and
the EWMA weekly volatility on the sample period.erpresence of two regimes is clearly evident
and can be easily interpreted as high and low Mbygberiods. The volatilities are significantly
different from zero.

Transition Statel State?2
Probability

State 1 0.98 0.02
State 2 0.13 0.87

Table 3 Transition matrix

Hereinafter, we investigate if the inclusion of &ture distribution improves the ability of the
model to anticipate the asset reaction to the facthocks. The idea is to perform a back testing
analysis. We divided the data into two samplesfitse12 years of weekly data for the parameter
estimation and the remaining 52 weeks for an otgamfple analysis. The out-of sample analysis
is repeated for 52 consecutive weeks .

We consider the conditional expected return conmpateording to the 4 models as forecasts of
future returns. We use as weekly shocks the vanatof the factors returns from their mean/main
values of the last 104 weeks and as Sharpe rtaiexcess return of the S&P over its variance in
the same period.

Each week we compute the mean squared errors éoteth shares. Errors are the difference
between the expected return computed accordingeartodels and the realization of the day.
Note that we reestimate the parameters of thallisivns each week.

In figure 3 and 4 we report the weekly mean sciiareors and their standard deviation.
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Figure 1: S&P Returns, posterior probabilities &WMA for the period 1996-2008;

The dynamic of the mean squared errors is verylairfar the first half of the year.

In general, model 1.B seems to overreact to théofacshocks, introducing an unacceptable
volatility. The difference among the models becomeslent only after July 2008. We observe a
dramatic increase in the mean squared errors betthee35' week and the 4bweek (October
2008). The best performance in the second halD682s provided by model 2.A and model 2.B,
with a smaller mean and smaller standard deviaifosquared errors. During the chaotic period,
model 2.B seems to more accurately describe thetioms of the expected return to the shocks.
However, on average, model 2.A gives the smalleam@rors and standard deviations.
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Figure 3 Weekly standard deviation of the squareatr®

Conclusion

The purpose of our work is twofold. Firstly to peasthe stress model used in Eurizon Capital
SGR, secondly to enhance the model by using auneixtistribution.

Some results of this model need to be outlinedce®any differential composition of an active
managed portfolio w.r.t. the benchmark, we can agephe differential (portfolio/benchmark)
impact, security by security, caused by the fatteinecks. Moreover, the covariance matrix of
asset returns is not directly involved in the cotapian of the delta performance. This result is
extremely important because it permits to diserlaatige assets correlation stress test from the
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factors correlation stress test. We can observeeffexts of large movements in the factors
assuming that correlations among factors are urmggthrWhen judging the usefulness of stress
scenarios, one has to take into account both ttee ofi the loss they cause and the plausibility.
Since the factors are elliptically distributed, @@ compute the plausibility of a scenario by using
the Mahalanobis distance of a scenagdrgm the present market situation.

The introduction of a mixture distribution improvése ability of the model to capture the
reaction of expected returns to extreme shockslllginn our opinion the model can also be used
in the optimisation process where returns for oyg@tion are derived from the scenario and the
result is a portfolio which maximises its senstiiuo the scenario itself.
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