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Abstract1

In this paper we survey the literature on the Black-Litterman model. This survey is provided both as a 
chronology and a taxonomy as there are many claims on the model in the literature. We provide a 
complete description of the canonical model including full derivations from the underlying principles 
using both  Theil's Mixed Estimation model and Bayes Theory. The various parameters of the model 
are considered, along with information on their computation or calibration.  Further consideration is 
given to several of the key papers, with worked examples illustrating the concepts.

1 The author gratefully acknowledges feedback and comments from Attilio Meucci and Boris Gnedenko.
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Introduction

The Black-Litterman Model was first published by Fischer Black and Robert Litterman in 1990.  
During the twenty plus years since the original papers, many authors have published research referring 
to their model as Black-Litterman. This has lead to a variety of models being labeled as Black-
Litterman even though they may be very different from the original model created by Black and 
Litterman. In the chronological survey of the literature we will introduce several papers which make 
significant contributions to the literature on the Black-Litterman model. We will also document the 
taxonomy of models which have been labeled as Black Litterman.  We will further refer to the Black-
Litterman model as described in the papers by the original authors as the canonical Black-Litterman 
model.

The canonical Black-Litterman model makes two significant contributions to the problem of asset 
allocation. First, it provides an intuitive prior, the equilibrium market portfolio, as a starting point for 
estimation of asset returns.  Previous similar work started either with the uninformative uniform prior 
distribution or with the global minimum variance portfolio.  The latter method, described by Frost and 
Savarino (1986), and Jorion (1986), took a shrinkage approach to improve the final asset allocation.  
Neither of these methods has an intuitive connection back to the market,.  The idea that one could use 
'reverse optimization' to generate a stable distribution of returns from the equilibrium market portfolio 
as a starting point for shrinkage is a significant improvement to the process of return estimation.

Second, the Black-Litterman model provides a clear way to specify investors views on returns and to 
blend the investors views with prior information.  The investor's views are allowed to be partial or 
complete, and the views can span arbitrary and overlapping sets of assets. The model outputs estimates 
of expected excess returns and the estimates corresponding precision  Prior to Black and Litterman, 
(1991a), nothing similar had been published for the portfolio selection problem.  Theil's mixing model 
had been developed, but nobody had applied it to the problem of estimating asset returns.  No research 
linked the process of specifying views to the blending of the prior and the investors views.  The Black-
Litterman model provides a quantitative framework for specifying the investor's views, and a clear way
to combine those investor's views with an intuitive prior to arrive at a new combined distribution.

The state of the art in the portfolio selection problem has changed significantly during the time since 
the publication of the Black-Litterman model.  Because of its rich theoretical basis it can be applied 
alongside many modern portfolio selection approaches as can be seen in the literature..

The rest of the document is structured in the following manner.  First we will address the literature 
survey and taxonomy, then we will describe each of the reference models, and then the estimation 
model.  Finally we will illustrate the concepts from many of the papers described in the literature 
survey.

Historical Taxonomy and Literature Survey

This section of the paper will provide survey of the literature and will classify the model used by each 
of the various authors.  The primary dimensions we will use to classify the authors' models will be; 
does it specify the estimates as distributions or as point estimates, and secondly does it include the 
parameter τ.  In order for an author's model to be canonical Black-Litterman it would need to match 
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both these conditions.

We will collect the models into three distinct Reference Models based on our dimensions provided 
above. We describe the situation where both conditions are met as the Canonical Reference Model.  
This is the model described by the original authors.  The Alternative Reference Model describes 
models which use point estimates, but for some reason include τ which now becomes a scaling factor 
with no quantitative basis. These authors treat the model as just a shrinkage/mixing model and lose the 
connection to Bayesian statistics. As we will see, using the Bayes law formula, but substituting in 
different variables is not theoretically tenable.. Finally the Beyond Black-Litterman Reference Model 
uses point estimates and no longer includes τ at all. Here we see a pure shrinkage/mixing model.  Each 
of the Reference Models is described in depth later in the paper.

The Black-Litterman model was first published by Fischer Black and Robert Litterman of Goldman 
Sachs in an internal Goldman Sachs Fixed Income Research Note, Black and Litterman (1990). This 
research note was extended into a paper and published in the Journal of Fixed Income in 1991, Black 
and Litterman (1991a). This paper does not provide all the formulas used in the model, but does 
provide a good overview of the features of the model. A second internal Goldman Sachs Fixed Income 
Research Note was published the same year, Black and Litterman (1991b). This second paper was later 
extended and published in the Financial Analysts Journal (FAJ) as Black and Litterman (1992). The 
latter article was then republished by FAJ in the mid 1990's.  Copies of the FAJ article are widely 
available on the Internet.  It provides the rationale for the methodology, and some information on the 
derivation, but does not show all the formulas or a full derivation.  It also includes a rather complex 
worked example based on the global equilibrium, see Litterman (2003) for more details on the methods
required to solve this problem.  Unfortunately, because of the merging of the two problems, their 
results are difficult to reproduce.  He and Litterman (1999) is the last paper by one of the original 
authors and it does provide more detail on the workings of the model, but not quite a complete set of 
formulas.  They do provide a much simpler to reproduce working example.

Bevan and Winkelmann (1998) provide details on how they use Black-Litterman as part of their 
broader Asset Allocation process at Goldman Sachs, including some calibrations of the model which 
they perform.  This is useful information for anybody planning on building Black-Litterman into an 
ongoing asset allocation process.

Satchell and Scowcroft (2000) attempted to demystify the Black-Litterman model, but instead 
introduced a new non-Bayesian expression of the model.  Their model uses point estimates for the prior
and the views, and uses τ and Ω only to control the amount of shrinkage of the views onto the prior. 
Because they use point estimates instead of distributions, their model does not include any information 
on the precision of the estimate. This allows them to recommend setting τ = 1. They also introduce a 
stochastic τ, but because they use point estimates this really becomes a model with a stochastic 
covariance of returns.  Th model was used occasionally in the literature after this point, but was largely 
replaced by Meucci's model  in the mid-2000's.

Drobetz (2001) provides further description of the Black-Litterman model including a good discussion 
of how to interpret the confidence in the estimates including a diagram.  He works an example. [Need 
more text here]

Fusai and Meucci (2003) introduced yet another non-Bayesian variant of the model which removed the 
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parameter τ all together. Meucci (2005) followed up on this paper and coined the phrase, “Beyond 
Black-Litterman”. Once the model is viewed as only a shrinkage model, Ω alone provides enough 
degrees of freedom to the shrinkage and τ is superfluous and confusing. Since the mid-2000's we have 
seen a mixture of the canonical and “Beyond Black-Litterman” model used in the literature2.  Since 
Fuasi and Meucci (2003) there has been little use of the hybrid reference model until Michaud, et al 
(2013) debunked it.

Firoozye and Blamont (2003), provide a good overview of the Canonical Reference Model and attempt 
to provide intuition in the setting of the parameter, τ. They illustrate the reduction in variance of the 
posterior estimate as a result of the mixing.

Herold (2003) provides an alternative view of the problem where he examines optimizing alpha 
generation for active portfolio management, essentially specifying that the sample distribution has zero 
mean. He uses the alternative reference model with point estimates and tracking error to determine how
much shrinkage to allow.  The two significant contributions of his paper are; the application of the 
model to active portfolio management and some additional measures which can be used to validate that
the views are reasonable.

Koch (2004) is a powerpoint presentation on the Black-Litterman model. It includes derivations of the 
'master formula' and the alternative form under 100% certainty.  He does not mention posterior 
variance, or show the alternative form of the 'master formula' under uncertainty (general case). He does
include a slide on sensitivity of the posterior estimate on τ, but he uses the alternative reference model 
so this information is not valid for the canonical model.

Idzorek (2005) introduced a technique for specifying Ω such that the impact of the shrinkage was 
specified in terms of percentage of change in the weights between 0 and the change caused by 100% 
confidence. His paper uses the Alternative Reference Model, but his technique can be applied to the 
Canonical Black-Litterman model because it is sensitive to the value of τ specified by the investor.

Krishnan and Mains (2005) provide an extension to the Black-Litterman model for an additional factor 
which is uncorrelated with the market.  They call this the Two-Factor Black-Litterman model and they 
show an example of extending Black-Litterman with a recession factor.  They show how it intuitively 
impacts the expected returns computed from the model.

Mankert (2006) provides a detailed walk through of the model and provides a detailed transformation 
between the two specifications of the Black-Litterman 'master formula' for the estimated asset returns.  
She approaches the problem from the point of view of sampling theory, and provides some new 
intuition about the value τ in the context of the alternative reference model.

Meucci (2006) provides a method to use non-normal views in Black-Litterman. Meucci (2008) extends 
this method to any model parameter, and allow for both analysis of the full distribution as well as 
scenario analysis.

Beach and Orlov (2006) illustrate using GARCH models to generate the views. They use a model of 
international equity across 20 developed countries.  They show how the results change as the investor 
uses different values for τ.  They do not provide exact details on the uncertainty of the views and 
appear to be using an alternative reference model even though their techniques can be applied to the 

2 A more comprehensive literature survey can be found at http://www.blacklitterman.org/methods.html.
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canonical reference model.

Braga and Natale (2007) describes a method of calibrating the uncertainty in the views using Tracking 
Error Volatility (TEV).  They provide sensitivities for the posterior estimates to the various views. 
[Verify]  This metric is a well known for it's use in active portfolio management.  They use the 
Alternative Reference Model but their work could be applied to the Canonical Reference Model a well.

Martellini and Ziemann (2007) describe an approach to active management of a fund of hedge funds.  
They use VaR as their objective function for the reverse optimization and they use a variant of the 
CAPM model extended to include skewness and kurtosis in determining their neutral portfolio.  They 
use a factor model to generate ankings and then convert the rankings into their confidence in the views.
They do not use the Bayesian features of the model, but rather use point estimates and thus do not have 
information on the precision of their estimates.

Giacommeti, et al (2007) provide an approach to computing the neutral portfolio using stable paretian 
distributions rather than the normal distribution described in Black and Litterman (1992).  They also 
use multiple different risk measures for the portfolio selection model; variance VaR, and CVaR, 

Cheung (2009) intoduces the concept of an augmented model.  This version of the model integrates a 
factor model and does a joint estimation of the factor returns.  Cheung uses the Alternative Reference 
Model, but his variant of the model could easily be used with the Canonical Reference Model.

Bertsimas, et al (2013)  They introduce a way to measure the alignment of the views with the prior 
estimate by comparing the view portfolio weights to the eigenvalues from the prior covariance matrix.

Michaud, et al (2013) provides a blistering critique of the Alternative Reference Model.  It is indeed a 
mixture of fact and opinion, only statistical methods will yield valid prior estimates.  Because of it's 
focus on the Alternative Reference Model (a significant part of the paper is devoted to problems with 
point estimates) much of it is not relevant to the Canonical Reference Model.  Further, the basic 
arguments restrict the reader to only basic statistical properties of time series (essentially ignoring non-
stationarity and auto-regressive properties) and ignores richer, state of the art econometric models.

There are some additional teaching notes put together through the years, Christodoulakis (2002) and Da
and Jagnannathan (2005) which provide very basic ideas for class room discussions.  The first 
describes the Canonical Reference model but does not explain what the posterior variance represents.  
The second quickly describes the model and then works an example illustrating some ways to arrive at 
the various inputs to the model. The authors use the Alternative Reference Model as they include tau, 
but do not compute a updated posterior covariance..

Much of the work presented with any of the reference models can be used with the Canonical 
Reference Model, even if it has been initially formulated for the Alternative Reference Model.  Later in
this paper we will show how many of these results can be generalized to work with the Canonical 
Reference Model.

The Canonical Black-Litterman Reference Model

The reference model for returns is the base upon which the rest of the Black-Litterman model is built.  
It includes the assumptions about which variables are random, and which are not.  It also defines which
parameters are modeled, and which are not modeled.  Most importantly, some authors of papers on the 
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Black-Litterman model use reference models, e.g. Alternative Reference Model or Beyond Black-
Litterman, which do not have the same theoretical basis as the canonical one which was initially 
specified in Black and Litterman (1992).

We start with normally distributed expected returns

(1) r~N  ,

The fundamental goal of the Black-Litterman model is to model these expected returns, which are 
assumed to be normally distributed with mean μ and variance Σ.  Note that we will need at least these 
values, the expected returns and covariance matrix later as inputs into a portfolio selection model.

We define μ, the unknown mean return, as a random variable itself distributed as

~N  , 

π is our estimate of the mean and Σπ is the variance of the unknown mean, μ, about our estimate.  
Another way to view this simple linear relationship is shown in the formula below.

(2) μ=π+ϵ

The prior returns are normally distributed around π with a disturbance value ε.  The diagram below 
shows the distribution of the actual mean about the estimated mean of 5% with a standard deviation of 
2% (or a variance of 0.0004).  We can see that this is not a very precise estimate from the width of the 
peak.

Figure 1 - Distribution of Actual Mean about Estimated Mean

ε is normally distributed with mean 0 and variance Σπ and is assumed to be uncorrelated with μ.  We 
can complete the reference model by defining Σr as the variance of the returns about our estimate π.  
From formula (2) and the assumption above that ε and μ are not correlated, then the formula to 
compute Σr is
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(3) r=

Formula (3) tells us that the proper relationship between the variances is (Σr ≥ Σ, Σπ ).

We can check the reference model at the boundary conditions to ensure that it is correct.  In the absence
of estimation error, e.g. ε ≡ 0 , then Σr = Σ. As our estimate gets worse, e.g. Σπ increases, then Σr 
increases as well.

The canonical reference model for the Black-Litterman model expected return is

(4) r~N  ,r

A common misconception about the canonical Black-Litterman reference model is that formula (1) is 
the reference model, and that μ is a point estimate. We have previously labeled this approach, the 
Alternate Reference Model. Several authors approach the problem from this point of view so we cannot
neglect it, but it is a fundamentally different model.  When considering results from various Black-
Litterman implementations it is important to understand which reference model is being used in order 
to understand how the various parameters will impact the results.

Computing the Equilibrium Returns

The Black-Litterman model starts with a neutral equilibrium portfolio for the prior estimate of returns.  
The model relies on General Equilibrium theory to state that if the aggregate portfolio is at equilibrium,
each sub-portfolio must also be at equilibrium.   It can be used with any utility function which makes it 
very flexible. In practice most practitioners use the Quadratic Utility function and assume a risk free 
asset, and thus the equilibrium model simplifies to the Capital Asset Pricing Model (CAPM).  The 
neutral portfolio in this situation is the CAPM Market portfolio. Some of the references listed have 
used other utility functions, most notably Bertsimas (2013), but others have consider CVaR and other 
measures of portfolio risk without applying the same theoretical basis. In order to preserve the 
symmetry of the model, the practioner should use the same utility function both to identify the neutral 
portfolio as well as in the portfolio selection area..

Here we will use the Quadratic Utility function, CAPM and unconsrained mean-variance because it is a
well understood model.

Given our previous assumptions, the prior distribution for the Black-Litterman model is the estimated 
mean excess return from the CAPM market portfolio. The process of computing the CAPM 
equilibrium excess returns is straight forward.

CAPM is based on the concept that there is a linear relationship between risk (as measured by standard 
deviation of returns) and return.  Further, it requires returns to be normally distributed. This model is of
the form

(5) E r =r f  rm

Where

r f The risk free rate.

r m The excess return of the market portfolio.
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 A regression coefficient computed as =
 p

m

 The residual, or asset specific (idiosyncratic) excess return.

Under CAPM the idiosyncratic risk associated with an asset is uncorrelated with that from other assets, 
and this risk can be reduced through diversification.  Thus the investor is rewarded for taking 
systematic risk measured by β, but is not rewarded for taking idiosyncratic risk associated with α.

In the CAPM world, all investors should hold the same risky portfolio, the CAPM market portfolio.  
Because all investors hold risky assets only in the market portfolio, at equilibrium the market 
capitalization of the various assets will determine their weights in the market portfolio.  The CAPM 
market portfolio has the maximum Sharpe Ratio3 of any portfolio on the efficient frontier.

The investor can also invest in a risk free asset.  This risk free asset has essentially a fixed positive 
return for the time period over which the investor is concerned. It is generally some tenor from the 
sovereign bond yield curve for the investors local currency.  Depending on how the asset allocation 
decision will be framed this risk free asset can range from a 4 week Treasury Bill (1 month horizon) to 
a 20 year inflation protected bond (20 year horizon).

Note that the CAPM market portfolio contains all investable assets which makes it very hard to actually
specify.  Because we are in equilibrium, all sub-markets must also be in equilibrium so any sub-market 
we chose to use is part of the global equilibrium. While this allows us to reverse optimize the excess 
returns from the market capitalization and the covariance matrix, forward optimization from this point 
to identify the investors optimal portfolio within CAPM is problematic as we do not have information 
for the entire market portfolio.  In general this is not actually the question an investor is asking, they 
usually select an investable universe and desire the optimal asset allocation within the universe, so the 
theoretical problem with the market portfolio can be ignored.

The Capital Market Line is a line through the risk free rate and the CAPM market portfolio. The Two 
Fund Separation Theorem, closely related to the CAPM, states that all investors should hold portfolios 
on the Capital Market Line.  Any portfolio on the Capital Market Line dominates all portfolios on the 
Efficient Frontier, the CAPM market portfolio being the only point on  the Efficient Frontier and on the
Capital Market Line. Depending on their risk aversion an investor will hold arbitrary fractions of their 
wealth in the risk free asset and/or the CAPM market portfolio.

The diagram below illustrates the relationship between the Efficient Frontier and the Capital Market 
Line.

3 The Sharpe Ratio is the excess return divided by the excess risk, or (r – rf) / σ.
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Figure 2 - Efficient Frontier

Since we are starting with the market portfolio, we will be starting with a set of weights which are all 
greater than zero and naturally sum to one.  The market portfolio only includes risky assets, because by 
definition investors are rewarded only for taking on systematic risk.  Thus, in the CAPM, the risk free 
asset with β = 0 will not be in the market portfolio. Later on we will see that our Bayesian investor may
invest in the risk free asset based on their confidence in their return estimates.

We will constrain the problem by asserting that the covariance matrix of the returns, Σ, is known.  In 
practice, this covariance matrix is estimated from historical return data.  It is often computed from 
higher frequency data and then scaled up to the time frame required for the asset allocation problem.  
By computing it from actual historical data, we can ensure the covariance matrix is positive definite.  
Without basing the estimation process on actual data there are significant issues involved in ensuring 
the covariance matrix is positive definite. We could however apply shrinkage or random matrix theory 
filters to the covariance matrix in an effort to make it more robust.

For the rest of this section, we will use a common notation, similar to that used in He and Litterman 
(1999) for all the terms in the formulas.  Be aware that this notation is different, and conflicts, with the 
notation used in the section on Bayesian theory.

Here we derive the equations for 'reverse optimization' starting from the quadratic utility function

(6) U=wT
−



2
wT

 w

U Investors utility, this is the objective function during Mean-Variance Optimization.
w Vector of weights invested in each asset
Π Vector of equilibrium excess returns for each asset
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δ Risk aversion parameter
Σ Covariance matrix of the excess returns for the assets

U is a convex function, so it will have a single global maxima. If we maximize the utility with no 
constraints, there is a closed form solution. We find the exact solution by taking the first derivative of 
(6) with respect to the weights (w) and setting it to 0.

dU
dw

=−w=0

Solving this for  Π (the vector of excess returns) yields:

(7) Π = δΣw

In order to use formula (7) to solve for the CAPM market portfolio, we need to have a value for δ, the 
risk aversion coefficient of the market.  One way to find δ is by multiplying both sides of (7) by wT and
replacing vector terms with scalar terms.

 (r – rf) = δσ2

Here our expression at equilibrium is that the excess return to the portfolio is equal to the risk aversion 
parameter multiplied by the variance of the portfolio.

(8) δ = (r – rf) / σ2

r Total return on the market portfolio (r = wTΠ + rf)
rf Risk free rate
σ-2 Variance of the market portfolio (σ2 = wTΣw)

Most of the authors specify the value of δ that they used.  Bevan and Winkelmann (1998) describe their
process of calibrating the returns to an average Sharpe Ratio based on their experience.  For global 
fixed income (their area of expertise) they use a Sharpe Ratio of 1.0.  Black and Litterman (1992) use a 
Sharpe Ratio closer to 0.5 in the example in their paper.

Given the Sharpe Ratio we can rewrite formula (8) for δ in terms of the Sharpe Ratio as

(9) =
SR
m

Thus we can calibrate our returns in terms of formulas (8) or (9). As part of our analysis we must arrive
at the terms on the right hand side of which ever formula we choose to use.  For formula (8); this is r, rf,
and σ2. in order to calculate a value for δ.  For formula (9) this is the Sharpe Ratio and σ.

In order to use formula (8) we need to have an implied return for the market portfolio which may be 
harder to estimate than the Sharpe Ratio of the market portfolio.

Once we have a value for δ, then we plug w, δ and Σ  into formula (7) and generate the set of 
equilibrium asset returns.  Formula (7) is the closed form solution to the reverse optimization problem 
for computing asset returns given an optimal mean-variance portfolio in the absence of constraints.  We
can rearrange formula (7) to yield the formula for the closed form calculation of the optimal portfolio 
weights in the absence of constraints.
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(10) w=
−1


Herold (2005) provides insights into how implied returns can be computed in the presence of simple 
equality constraints such as the budget or full investment (Σw =1) constraint.  He illustrates how errors 
can be introduced during a reverse optimization process if constraints are assumed to be non-binding 
when they are actually binding for a given portfolio.  Note that because we are dealing with the market 
portfolio which has only positive weights which sum to 1, we can safely assume that there are no 
binding constraints on the reverse optimization.

The only missing piece is the variance of our estimate of the mean.  Looking back at the reference 
model, we need Σπ.  Black and Litterman made the simplifying assumption that the structure of the 
covariance matrix of the estimate is proportional to the covariance of the returns Σ.  They created a 
parameter, τ, as the constant of proportionality.  Given that assumption,  Σπ = τΣ, then the prior 
distribution P(A) is:

(11) P(A) ~ N(Π, τΣ), rA ~ N(P(A), Σ)

This is the prior distribution for the Black-Litterman model.  It represents our estimate of the mean, 
which is expressed as a distribution of the actual unknown mean about our estimate.

Using formula (4) we can rewrite formula (11) in terms of Π as

(12) rA ~ N(Π, (1 + τ)Σ)

It is often written that an investor with no views and using an unconstrained mean-variance portfolio 
selection model will invest 100% in the neutral portfolio, but this is only true if they apply a budget 
constraint.  Because of their uncertainty in the estimates they will invest 1/(1+ τ) in the neutral portfolio
and τ/(1+τ) in the risk free asset.  We can see this is the case as follows, starting from (7):

The diagram below illustrates this concept graphically.
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Figure 3 - Investor's Portfolio in the Absence of Views

We can alternatively view the Bayesian efficient frontier as a shift to the right if we plot the efficient 
frontier generated with the increased covariance matrix and a budget constraint.  In this case the 
uncertainty just pushes each point further to the right in risk/return space.

Figure 4 - Risk Adjusted Bayesian Efficient Frontier

Specifying the Views

This section will describe the process of specifying the investors views on the estimated mean excess 
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returns.  We define the combination of the investors views as the conditional distribution.  First, by 
construction we will require each view to be unique and uncorrelated with the other views.  This will 
give the conditional distribution the property that the covariance matrix will be diagonal, with all off-
diagonal entries equal to 0. We constrain the problem this way in order to improve the stability of the 
results and to simplify the problem.  Estimating the covariances between views would be even more 
complicated and error prone than estimating the view variances.  Second, we will require views to be 
fully invested, either the sum of weights in a view is zero (relative view) or is one (an absolute view).  
We do not require a view on any or all assets.  In addition it is actually possible for the views to 
conflict, the mixing process will merge the views based on the confidence in the views and the 
confidence in the prior.

We will represent the investors k views on n assets using the following matrices

• P, a k×n matrix of the asset weights within each view.  For a relative view the sum of the 
weights will be 0, for an absolute view the sum of the weights will be 1. Different authors 
compute the various weights within the view differently, He and Litterman (1999) and Idzorek 
(2005) use a market capitalization weighed scheme, whereas Satchell and Scowcroft (2000) use 
an equal weighted scheme in their examples.  In practice weights will be a mixture depending 
on the process used to estimate the view returns.

• Q, a k×1 vector of the returns for each view.

• Ω a  k×k matrix of the covariance of the views. Ω is diagonal as the views are required to be 
independent and uncorrelated.  Ω-1 is known as the confidence in the investor's views. The i-th 
diagonal element of Ω is represented as ωi.

We do not require P to be invertible.  Meucci (2006) describes a method of augmenting the matrices to 
make the P matrix invertible while not changing the net results.

Ω is symmetric and zero on all non-diagonal elements, but may also be zero on the diagonal if the 
investor is certain of a view.  This means that Ω may or may not be invertible.  At a practical level we 
can require that ω > 0 so that Ω is invertible, but we will reformulate the problem so that Ω is not 
required to be inverted.

As an example of how these matrices would be populated we will examine some investors views.  Our 
example will have four assets and two views.  First, a relative view in which the investor believes that 
Asset 1 will outperform Asset 3 by 2% with confidence. ω1. Second, an absolute view in which the 
investor believes that Asset 2 will return 3% with confidence ω2.  Note that the investor has no view on 
Asset 4, and thus it's return should not be directly adjusted.  These views are specified as follows:

P=[1 0 −1 0
0 1 0 0] ; Q=[23] ; =[11 0

0 22
]

Given this specification of the views we can formulate the conditional distribution mean and variance 
in view space as

P(B|A) ~ N(Q, Ω)
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We generally cannot convert this into a useful expression into asset space because of the mixture of 
relative and absolute views, and because the P matrix is not required to be of full rank. If we did 
express the views in asset space the formula is shown below.

(13) P(B|A) ~ N(P-1Q, [PTΩ-1P]-1)

This representation is not of any practical use.  Incomplete views and relative views make the variance 
non-invertible, and relative views also impact the mean term. Remember that P may not be invertible, 
and even if P is invertible [PTΩ-1P] is probably not invertible, making this expression impossible to 
evaluate in practice.  Luckily, to work with the Black-Litterman model we don't need to evaluate 
formula (13).  It is however, interesting to see how the views are projected into the asset space.

Specifying Ω

Ω, the variance of the views is inversely related to the investors confidence in the views, however the 
basic Black-Litterman model does not provide an intuitive way to quantify this relationship.  It is up to 
the investor to compute the variance of the views Ω.

There are several ways to calculate Ω.

● Proportional to the variance of the prior

● Use a confidence interval

● Use the variance of residuals in a factor model

● Use Idzorek's method to specify the confidence along the weight dimension

Proportional to the Variance of the Prior

We can just assume that the variance of the views will be proportional to the variance of the asset 
returns, just as the variance of the prior distribution is.  Both He and Litterman (1999), and Meucci 
(2006) use this method, though they use it differently.  He and Litterman (1999) set the variance of the 
views as follows:

(14)
ij=p   pT

∀ i= j
ij=0 ∀ i≠ j

or

=diag P PT 

This specification of the variance, or uncertainty, of the views essentially equally weights the investor's
views and the market equilibrium weights. By including τ in the expression, the posterior estimate of 
the returns becomes  independent of τ as well.  This seems to be the most common method used in the 
literature.

Meucci (2006) doesn't bother with the diagonalization at all, and just sets 

=
1
c

P  P t
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He sets c >1, and one obvious choice for c is τ-1.We will see later that this form of the variance of the 
views lends itself to some simplifications of the Black-Litterman formulas.

Use a Confidence Interval

The investor can specify the variance using a confidence interval around the estimated mean return, e.g.
Asset has an estimated 3% mean return with the expectation it is 68% likely to be within the interval 
(2.0%,4.0%). Knowing that 68% of the normal distribution falls within 1 standard deviation of the 
mean allows us to translate this into a variance for the view of (1%)2.

Note that Ω is our uncertainty in the estimate of the mean, we are not specifying the variance of returns 
about the mean.  This formulation of the variance of the view is consistent with the canonical reference 
model.

Use the Variance of Residuals from a Factor Model

If the investor is using a factor model to compute the views, they can use the variance of the residuals 
from the model to drive the variance of the return estimates.  The general expression for a factor model 
of returns is:

(15) r=∑
i=1

n

i f i

Where

r is the return of the asset
i is the factor loading for factor (i)
f i is the return due to factor (i)
 is an independent normally distributed residual

And the general expression for the variance of the return from a factor model is:

(16) V  r =B V F BT
V 

B is the factor loading matrix
F is the vector of returns due to the various factors

Given formula (15), and the assumption that ε is independent and normally distributed, then we can 
compute the variance of ε directly as part of the regression.  While the regression might yield a full 
covariance matrix, the mixing model will be more robust if only the diagonal elements are used.

Beach and Orlov (2006) describe their work using GARCH style factor models to generate their views 
for use with the Black-Litterman model.  They generate the precision of the views using the GARCH 
models.

Use Idzorek's Method

Idzorek (2005) describes a method for specifying the confidence in the view in terms of a percentage 
move of the weights on the interval from 0% confidence to 100% confidence.  We will look at 
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Idzorek's algorithm in the section on extensions.

The Estimation Model

The original Black-Litterman paper references Theil's Mixed Estimation model rather than a Bayesian 
estimation model, though we can get similar results from both methodologies.  We choose to start with 
Theil's model because it is simpler and cleaner. We also work through the Bayesian version of the 
derivations for completeness.

With either approach, we will be using the Canonical Black-Litterman Reference Model.  In this 
reference model the estimation model is used to compute the distribution of the estimated returns about 
the mean return, and then to estimate the distribution of returns about the mean return.  This distinction 
is important in understanding the values used for τ and Ω, and for the computations of the variance of 
the prior and posterior distributions of returns.

The posterior estimate of the mean generated by the estimation model is more precise than either the 
prior estimate or the investors views.  Note that we would not expect large changes in the variance of 
the distribution of returns about the mean because our estimate of the mean is more precise.  The 
prototypical example of this would be to blend the distributions, P(A) ~ N(10%, 20%) and P(B|A) ~ 
N(12%, 20%).  If we apply either estimation model in a straightforward fashion, P(A|B) ~ N(11%, 
10%).  Clearly with financial data we did not really cut the variance of the return distribution about the 
mean in ½ just because we have a slightly better estimate of the mean.  In this case, the mean is the 
random variable, thus the variance of our posterior corresponds to the variance of the estimated mean 
around the mean return; not the variance of the distribution of returns about the mean return.  In this 
case, the posterior result of P(A|B) ~ N(11%, 10%) makes sense.  By blending these two estimates of 
the mean, we have an estimate of the mean with much less uncertainty (less variance) than either of the 
estimates, even though we do not have a better estimate of the the actual distribution of returns around 
the mean.

Theil's Mixed Estimation Model

Theil's mixed estimation model was created for the purpose of estimating parameters from a mixture of
complete prior data and partial conditional data.  This is a good fit with our problem as it allows us to 
express views on only a subset of the asset returns, there is no requirement to express views on all of 
them.  The views can also be expressed on a single asset, or on arbitrary combinations of the assets.  
The views do not even need be consistent, the estimation model will take each into account based on 
the investors confidence.

Theil's Mixed Estimation model starts from a linear model for the parameters to be estimated.  We can 
use formula (2) from our reference model as a starting point.

Our simple linear model is shown below:

(17) xβ=π+u

Where
 is the n x 1 vector of equilibrium returns for the assets.
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x is the n x n matrix In which are the factor loadings for our model.
 is the n x 1 vector of unknown means for the asset return process.
u is a n x n matrix of residuals from the regression where E u =0 ;V u=E u ' u=

and Φ is non-singular.

The Black-Litterman model uses a very simple linear model, the expected return for each asset is 
modeled by a single factor which has a coefficient of 1.  Thus, x, is the identity matrix.  Given that β 
and u are independent, and x is constant, then we can model the variance of π as:

V  =x ' V  xV u 

Which can be simplified to:

(18) V  =

Where
 is the historical covariance matrix of the returns as used earlier.
 is the covariance of the residuals or of the estimate about the actual mean.

This ties back to formula (3) in the reference model.  The total variance of the estimated return is the 
sum of the variance of the actual return process plus the variance of the estimate of the mean.  We will 
come back to this relation again later in the paper.

Next we consider some additional information which we would like to combine with the prior.  This 
information can be subjective views or can be derived from statistical data.  We will also allow it to be 
incomplete, meaning that we might not have an estimate for each asset return.

(19) pβ=q+v

Where
q is the k x 1 vector of returns for the views.
p is the k x n matrix mapping the views onto the assets.
 is the n x 1 vector of unknown means for the asset return process.
v is a k x 1 vector of of residuals from the regression where

E v =0 ;V v=E v ' v = and Ω is non-singular.

We can combine the prior and conditional information by writing:

[ x
p]β̂=[πq ]+[uv ]

Where the expected value of the residual is 0, and the expected value of the variance of the residual is

V [uv]=E [u
v][u ' v ' ]]=[ 0

0 ]
We can then apply the generalized least squares procedure, which leads to estimating   as

© Copyright 2007-14, Jay Walters
17



=[[ x ' p ' ][ 0
0  ]

−1

[ x
p ]]

−1

[ x ' p ' ][ 0
0  ]

−1

[q ]
This can be rewritten without the matrix notation as

(20) =[ x '−1 xp ' −1 p ]
−1

[ x '−1
 p '−1 q ]

For the Black-Litterman model which is a single factor per asset, we can drop x as it is the identity 
matrix.  If one wanted to use a multi-factor model for the equilibrium, then x would be the equilibrium 
factor loading matrix.

(21) =[−1
 p ' −1 p ]

−1
[−1

p ' −1q ]

This new  is the weighted average of the estimates, where the weighting factor is the precision of 
the estimates.  The precision is the inverse of the variance. The posterior estimate  is also the best 
linear unbiased estimate given the data, and has the property that it minimizes the variance of the 
residual. Note that given a new  , we also should have an updated expectation for the variance of 
the residual.

If we were using a factor model for the prior, then we would keep x, the factor weightings, in the 
formulas.  This would give us a multi-factor model, where all the factors will be priced into the 
equilibrium.

We can reformulate our combined relationship in terms of our estimate of  and a new residual u
as

[ x
p]β̂=[πq ]+ ũ

Once again E  u =0 , so we can derive the expression for the variance of the new residual as:

(22) V  u=E  u ' u=[−1
 p' −1 p ]

−1

and the total variance is

V  [ y  ]=V   V  u 

We began this section by asserting that the variance of the return process is a known quantity.  
Improved estimation of the quantity  does not change our estimate of the variance of the return 
distribution, Σ.  Because of our improved estimate, we do expect that the variance of the estimate 
(residual) has decreased, thus the total variance has changed. We can simplify the variance formula 
(18) to

(23) V  [ y  ]=V  u

This is a clearly intuitive result, consistent with the realities of financial time series.  We have 
combined two estimates of the mean of a distribution to arrive at a better estimate of the mean.  The 
variance of this estimate has been reduced, but the actual variance of the underlying process has not 
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changed.  Given our uncertain estimate of the process, the total variance of our estimated process has 
also improved incrementally, but it has the asymptotic limit that it cannot be less than the variance of 
the actual underlying process.

This is the convention for computing the covariance of the posterior distribution of the canonical 
reference model as shown in He and Litterman (1999).

In the absence of views,formula (23) simplifies to

V  [ y  ]=

Which is the variance of the prior distribution of returns.

Appendix A contains a more detailed derivation of formulas (21) and (22).

Using Bayes Theorem for the Estimation Model

See Appendix B for a brief introduction to Bayes Theorem as it is used in deriving the Black-Litterman
model.

In the Black-Litterman model, the prior distribution is based on the equilibrium implied excess returns. 
One of the major assumptions made by the Black-Litterman model is that the covariance of the prior 
estimate is proportional to the covariance of the actual returns, but the two quantities are independent.  
The parameter τ will serve as the constant of proportionality. The prior distribution for the Black-
Litterman model was specified in formula (11).

The conditional distribution is based on the investor's views.  The investor's views are specified as 
returns to portfolios of assets, and each view has an uncertainty which will impact the overall mixing 
process.  The conditional distribution from the investor's views was specified in formula (13).

The posterior distribution from Bayes Theorem is the precision weighted average of the prior estimate 
and the conditional estimate.  We can now apply Bayes theory to the problem of blending the prior and 
conditional distributions to create a new posterior distribution of the asset returns. Given equations  
(11) and (13), for our prior and conditional distribution respectively, we can apply Bayes Theorem and 
derive the following formula for the posterior distribution of asset returns.

(24)  P A | B~N [ 
−1
PT


−1Q ] [

−1
PT


−1 P ]

−1 , [
−1
PT


−1 P ]

−1


This is sometimes referred to as the Black-Litterman master formula. A complete derivation of the 
formula is shown in Appendix B.  An alternate representation of the same formula for the mean returns
 and covariance (M) is

(25) =  PT
[P  PT

]
−1
[Q−P]

(26) M= 
−1
PT


−1 P 

−1

The derivation of formula (25) is shown in Appendix D.  Remember that M, the posterior variance, is 
the variance of the posterior mean estimate about the actual mean.  It is the uncertainty in the posterior 
mean estimate, and is not the variance of the returns.

Computing the posterior covariance of returns requires adding the variance of the estimate about the 
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mean, to the variance of the distribution about the estimate the same as in (23).  This is mentioned in 
He and Litterman (1999) but not in any of the other papers.

(27) Σp =  Σ + M 

Substituting the posterior variance from (26) we get

Σp =  Σ +  ((τΣ)-1 + PTΩ-1P)-1 

In the absence of views this reduces to

(28) Σp = Σ + (τΣ) = (1 + τ)Σ

Thus when applying the Black-Litterman model in the absence of views the variance of the estimated 
returns will be greater than the prior distribution variance.  We see the impact of this formula in the 
results shown in He and Litterman (1999).  In their results, the investor's weights sum to less than 1 if 
they have no views.4  Idzorek (2005) and most other authors do not compute a new posterior variance, 
but instead use the known input variance of the returns about the mean.

In the event our investor has only partial views, that is views on a subset of the assets, then by using a 
posterior estimate of the variance we will tilt the posterior weights towards assets with lower variance 
(higher precision of the estimated mean) and away from assets with higher variance (lower precision of
the estimated mean). Thus the existence of the views and the updated covariance will tilt the optimizer 
towards using or not using those assets.  This tilt will not be very large if we are working with a small 
value of τ, but it will be measurable.

Since we often build the known covariance matrix of returns, Σ, from historical data we can use 
methods from basic statistics to compute τ. as τΣ is analogous to the standard error.  We can also 
estimate τ based on our confidence in the prior distribution. Note that both of these techniques provide 
some intuition for selecting a value of τ which is closer to 0 than to 1.  Black and Litterman (1992), He 
and Litterman (1999) and Idzorek (2005) all indicate that in their calculations they used small values of
τ, on the order of 0.025 – 0.050.  Satchell and Scowcroft (2000) state that many investors use a τ 
around 1, which has no intuitive connection to the data and in fact shows that their paper uses the 
Alternative Refernce Model.

We can check our results by seeing if the results match our intuition at the boundary conditions.

Given formula (25) it is easy to let Ω → 0 showing that the return under 100% certainty of the views is

(29) = PT [P  PT ]−1[Q−P]

Thus under 100% certainty of the views, the estimated return is insensitive to the value of τ used.

Furthermore, if P is invertible which means that we have offered a view on every asset, then 

Π̂=P−1Q

If the investor is not sure about their views, so Ω → ∞, then formula (25) reduces to

=

4 This is shown in table 4 and mentioned on page 11 of He and Litterman (1999).
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Finding an analytically tractable way to express and compute the posterior variance under 100% 
certainty is a challenging problem.

The alternate formula for the posterior variance derived from (26) using the Woodbury Matrix Identity 
is 

(30) M= − PT
P PT


−1 P 

If  Ω → 0 (total confidence in views, and every asset is in at least one view) then formula (30) can be 
reduced to M = 0.  If on the other hand the investor is not confident in their views, Ω → ∞, then 
formula (30) can be reduced to M =  τΣ.

The Alternative Reference Model

This section will discuss the most common alternative reference model used with the Black-Litterman 
estimation model.

The most common alternative reference model is the one used in Satchell and Scowcroft (2000), and in 
the work of Meucci prior to his introduction of “Beyond Black-Litterman”.

E r ~N  ,

In this reference model, μ is normally distributed with variance Σ.  We estimate μ, but μ is not 
considered a random variable.  This is commonly described as having a τ = 1, but more precisely we 
are making a point estimate and thus have eliminated τ as a parameter.  In this model Ω becomes the 
covariance of the returns to the views around the unknown mean return, , just as Σ is the covariance of 
the prior return about it's mean.  Gven that we are now using point estimates, the posterior is now a 
point estimate and we no longer worry about posterior covariance of the estimate.  In this model we do 
not have a posterior precision to use downstream in our portfolio selection model.

We rewrite formula (25), noting that we can move around the τ term.

= PT
[P PT





]
−1

[Q−P ]

Now we see that τ only appears in one term in this formula.  Because the Alternative Reference Model 
does not include updating the Covariance of the estimates this is the only formula.  Given that the 
investor is selecting both Ω and τ to control the blending of the prior and their views, we can eliminate 
one of the terms.  Since τ is a single term for all views and Ω  has a separate element for each view, we 
will keep Ω.  We can then rewrite the posterior estimate of the mean, as follows.

(31) = PT
[P PT

]
−1
[Q−P ]

The primary artifacts of this new reference model are, first τ is gone, and second, the investor's 
portfolio weights in the absence of views equal the equilibrium portfolio weights.  Finally at 
implementation time there is no need or use of formulas (26) or (27).

Note that none of the authors prior to Meucci (2008) except for Black and Litterman (1992), and He 
and Litterman (1999) make any mention of the details of the Canonical Reference Model, or of the fact 
that different authors actually use quite different reference models.
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In the Canonical Reference Model, the updated posterior covariance of the unknown mean about the 
estimate will be smaller than the covariance of either the prior or conditional estimates, indicating that 
the addition of more information will reduce the uncertainty of the model.  The variance of the returns 
from formula (27) will never be less than the prior variance of returns.  This matches our intuition as 
adding more information should reduce the uncertainty of the estimates. Given that there is some 
uncertainty in this value (M), then formula (27) provides a better estimator of the variance of returns 
than the prior variance of returns.

The Impact of τ

The meaning and impact of the parameter τ causes a great deal of confusion for many users of the 
Black-Litterman model.  We know that investors using the Canonical Reference Model use τ and that it
has a very precise meaning in the model.  An author who selects an essentially random value for τ is 
likely not using the Canonical Reference Model, but is instead using the Alternative Reference Model.

Given the Canonical Reference Model we can still perform an exercise to understand the impact of τ on
the results.  We will start with the expression for Ω similar to the one used by He and Litterman (1999).
Rather than using only the diagonal, we will retain the entire structure of the covariance matrix to make
the math simpler.

(32) =P   PT

We can substitute this into formula (25) as

=  PT
[P PT

]
−1
[Q−P 

T
]

=  PT
[P  PT

P  PT
]
−1
[Q−P 

T
]

=  PT
[2P  PT

]
−1
[Q−P 

T
]

=
1
2
  PT

PT

−1
[P ]

−1
[Q−P 

T
]

=
1
2
  

−1 P−1
[Q−P 

T
]

=
1
2
P−1

[Q−P
T
]

(33) =
1
2
[P−1 Q−

T
]

Clearly using formula (32) is just a simplification and does not do justice to investors views, but we can
still see that setting Ω proportional to τ, will eliminate τ  from the final formula for  .  In the 
Canonical Reference Model it does not eliminate τ from the formulas for posterior covariance (27). In 
the general form if we formulate Ω as

(34) =P  PT

Then we can rewrite formula (33) as
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(35) =
1

1
[P−1 Q−]

We can see a similar result if we substitute formula (32) into formula (30).

M= − PT [P  PT]−1 P 

=−  PT
[P  PT

P PT
]
−1 P 

=−  PT
[2P  PT

]
−1 P 

=−
1
2
PT

PT

−1
 

−1
P 

−1
P  

=−
1
2
 

(36) M=
1
2


Note that τ is not eliminated from formula (36). We can also observe that if τ is on the order of 1 and 
we were to use formula (27) that the uncertainty in the estimate of the mean would be a significant 
fraction of the variance of the returns.  With the Alternative Reference Model, no posterior variance 
calculations are performed and the mixing is weighted by the variance of returns.

In both cases, our choice for Ω has evenly weighted the prior and conditional distributions in the 
estimation of the posterior distribution.  This matches our intuition when we consider we have blended 
two inputs, for both of which we have the same level of uncertainty.  The posterior distribution will be 
the average of the two distributions.

If we instead solve for the more useful general case of Ω =  αP(τΣ)PT  where α ≥ 0, substituting into 
(25) and following the same logic as used to derive (36) we get

(37) =
1

1
[P−1Q− ]

This parametrization of the uncertainty is specified in Meucci (2005) and it allows us an option 
between using the same uncertainty for the prior and views, and having to specify a separate and 
unique uncertainty for each view.  Given that we are essentially multiplying the prior covariance matrix
by a constant this parametrization of the uncertainty of the views does not have a negative impact on 
the stability of the results.

Note that this specification of the uncertainty in the views changes the assumption from the views 
being uncorrelated, to the views having the same correlations as the prior returns.

In summary, if the investor uses the Alternative Reference Model and makes Ω proportional to Σ, then 
they need only calibrate the constant of proportionality, α, which indicates their relative confidence in 
their views versus the equilibrium.  If they use the Canonical Referemce Model and set Ω proportional 
to τΣ, then the return estimate will not depend on the value of τ, but the posterior covariance of returns 
will depend on the proper calibration of τ.
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Calibrating τ

This section will discuss some empirical ways to select and calibrate the value of τ.

The first method to calibrate τ relies on falling back to basic statistics.  When estimating the mean of a 
distribution, the uncertainty (variance) of the mean estimate will be proportional to the inverse of the 
number of samples.  Given that we are estimating the covariance matrix from historical data, then

=
1
T

The maximum likelihood estimator

=
1

T −k
The best quadratic unbiased estimator

T The number of samples

k The number of assets

There are other estimators, but usually, the first definition above is used.  Given that we usually aim for
a number of samples around 60 (5 years of monthly samples) then τ is on the order of 0.02.  This is 
consistent with several of the papers which indicate they used values of τ on the range (0.025, 0.05).

The most intuitively easy way to calibrate τ is as part of a confidence interval for the prior mean 
estimates.  We will illustrate this concept with a simple example.  Consider the scenario where τ = 0.05
and we consider only a single asset with a prior estimate of 7% as the excess return and 15% as the 
known standard deviation of returns about the mean.   For our view we use a confidence interval of 
(1%, 5%) with 68% confidence.

We keep the ratio of View Precision to Prior Precision fixed between the two scenarios, one with τ = 
0.05 and one with τ = 1.  In the first scenario even though we use a seemingly small τ = 0.05, our prior 
estimate has relatively low precision based on the width of the confidence interval, and thus the 
posterior estimate will be heavily weighted towards the view.  In the second scenario with τ = 1, the 
prior confidence interval is so wide as to make the prior estimate close to worthless.  In order to keep 
the posterior estimate the same across scenarios, the view estimate also has a wide confidence interval 
indicating the investor is really not confident in any of their estimates.

τ Prior @ 68% 
Confidence

Prior 
Precision

View σ View 
Precision

View @ 68% 
Confidence

View/Prior 
Precision

0.05 (4.6%, 9.4%) 888 2.00% 2500 (1%, 5%) 2.81

1.00 (-8%, 22%) 44.4 8.90% 125 (-5.9%, 11.9%) 2.81

Given such wide intervals for the τ = 1 scenario, 16% confidence that our asset has a mean return less 
than -8%, it is hard to imagine having much conviction in using the final asset allocation.  
Understanding the interplay between the selection of τ and the specification of the variance of the 
views is critical.

Note that this example illustrates the difference between the parameters for the Canonical Reference 
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Model and the Alternative Reference Model.  Specifying  τ = 1 is the Alternative Reference Model, but
just generates garbage outputs from the Canonical Reference Model.

Finally, we could instead calibrate τ to the amount invested in the risk free asset given the prior 
distribution.  Here we see that the portfolio invested in risky assets given the prior views will be

w=[ 1]−1

Thus the weights allocated to the assets are smaller by [1/(1+τ)] than the CAPM market weights.  This 
is because our Bayesian investor is uncertain in their estimate of the prior, and they do not want to be 
100% invested in risky assets.

Results

This section of the document will step through a comparison of the results of the various authors.  The 
java programs used to compute these results are all available as part of the akutan open source finance 
project at sourceforge.net. All of the mathematical functions were built using the Colt open source 
numerics library for Java.   Selected formulas are also available as MATLAB and/or SciLab scripts on 
the website blacklitterman.org.  Any small differences between my results and the authors reported 
results are most likely the result of rounding of inputs and/or results.

When reporting results most authors have just reported the portfolio weights from an unconstrained 
optimization using the posterior mean and variance.  Given that the vector Π is the excess return vector,
then we do not need a budget constraint (Σwi = 1) as we can safely assume any 'missing' weight is 
invested in the risk free asset which has expected return 0 and variance 0.  This calculation comes from 
formula (10).

w = Π(δΣp)-1

As a first test of our algorithm we verify that when the investor has no views that the weights are 
correct, substituting formula (28) into (10) we get

wnv = Π(δ(1+τ)Σ)-1

(38) wnv = w/(1+τ)

Given this result, it is clear that the output weights with no views will be impacted by the choice of τ 
when the Black-Litterman reference model is used.  He and Litterman (1999) indicate that if our 
investor is a Bayesian, then they will not be certain of the prior distribution and thus would not be fully 
invested in the risky portfolio at the start.  This is consistent with formula (38).

Matching the Results of He and Litterman

First we will consider the results shown in He and Litterman (1999).  These results are the easiest to 
reproduce as they clearly implement the Canonical Reference Model and they provide all the data 
required to reproduce their results in the paper.

He and Litterman (1999) set 

(39) Ω =  diag(PT(τΣ)P)
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This essentially makes the uncertainty of the views equivalent to the uncertainty of the equilibrium 
estimates.  They select a small value for τ (0.05), and they use the Canonical Reference Model and the 
updated posterior variance of returns as calculated in formulas (30) and (27).

Table 1 – These results correspond to Table 7 in [He and Litterman, 1999].

Asset P0 P1 μ weq/(1+τ)  w* w* - weq/(1+τ)

Australia 0.0 0.0 4.3 16.4   1.5%    .0%

Canada 0.0 1.0 8.9   2.1%  53.9%  51.8%

France -0.295 0.0 9.3   5.0%   -.5%  -5.4%

Germany 1.0 0.0 10.6   5.2%  23.6%  18.4%

Japan 0.0 0.0 4.6  11.0%  11.0%   .0%

UK -0.705 0.0 6.9  11.8%  -1.1% -13.0%

USA 0.0 -1.0 7.1  58.6%   6.8% -51.8%

q 5.0 4.0

ω/τ .043 .017

λ .193 .544

Table 1 contains results computed using the akutan implementation of Black-Litterman and the input 
data for the equilibrium case and the investor's views from He and Litterman (1999).  The values 
shown for w* exactly match the values shown in their paper.Figure 5 - Distributions of Actual Means 
about Estimates Means
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The preceding diagrams show the pdf for the prior, view and posterior for each View defined in the 
problem.  The y axis uses the same scale in each graph.  Note how in view 1 the view (conditional 
distribution of the estimated mean) is much more diffuse because the variance of the estimate is larger 
(precision of the estimate is smaller).  Also note how the precision of the prior and views impacts the 
precision (width of the peak) on the pdf.  In view 1 with the less precise view, the posterior is also less 
precise.

Matching the Results of Idzorek

This section of the document describes the efforts to reproduce the results of Idzorek (2005).  In trying 
to match Idzorek's results we found that he used the Alternative Reference Model. which leaves Σ, the 
known variance of the returns from the prior distribution, as the variance of the posterior returns.  This 
is a significant difference from the Canonical Reference Model,, but in the end the differences 
amounted to only 50 basis points per asset.  Tables 2 and 3 below illustrate computed results with the 
data from his paper and how the results differ between the two versions of the model.

Table 2 contains results generated using the data from Idzorek (2005) and  the Canonical Reference 
Model..  Table 3 shows the same results as generated by the Alternative Reference Model.

Table 2 – Canonical Reference Model with Idzorek data (Corresponds with data in Idzorek's Table 6). 

Asset Class μ   weq   w* Black-Litterman 
Reference Model

Idzorek's 
Results

US Bonds .07  18.87%  28.96%  10.09% 10.54

Intl Bonds .50  25.49%  15.41% -10.09% -10.54
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Asset Class μ   weq   w* Black-Litterman 
Reference Model

Idzorek's 
Results

US LG 6.50  11.80%   9.27%  -2.52% -2.73

US LV 4.33  11.80%  14.32%   2.52% -2.73

US SG 7.55   1.31%   1.03%   -.28% -0.30

US SV 3.94   1.31%   1.59%    .28% 0.30

Intl Dev 4.94  23.59%  27.74%   4.15% 3.63

Intl Emg 6.84   3.40%   3.40%    .0% 0

Note that the results in Table 2 are close, but for several of the assets the difference is about 50 basis 
points. The values shown in Table 3 are within 4 basis points, essentially matching the results reported 
by Idzorek.

Table 3 – Alternative Reference Model with Idzorek data (Corresponds with data in Idzorek's Table 6).

Country μ   weq   w Alternative 
Reference Model

Idzorek's 
Results

US Bonds .07  19.34%  29.89%  10.55%  10.54

Intl Bonds .50  26.13%  15.58% -10.55% -10.54

US LG 6.50 12.09% 9.37% -2.72% -2.73

US LV 4.33 12.09% 14.81% 2.72% -2.73

US SG 7.55 1.34%   1.04%   -.30% -0.30

US SV 3.94 1.34% 1.64% .30% 0.30

Intl Dev 4.94  24.18%  27.77%   3.59% 3.63

Intl Emg 6.84   3.49% 3.49%    .0% 0

Additional Work

This section provides a brief discussion of efforts to reproduce results from some of the major research 
papers on the Black-Litterman model.
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Of the major papers on the Black-Litterman model, there are two which would be very useful to 
reproduce, Satchell and Scowcroft (2000) and Black and Litterman (1992).  Satchell and Scowcroft 
(2000) does not provide enough data in their paper to reproduce their results.  They have several 
examples, one with 11 countries equity returns plus currency returns, and one with fifteen countries.  
They don't provide the covariance matrix for either example, and so their analysis cannot be 
reproduced.  It would be interesting to confirm that they use the Alernative Reference Model by 
reproducing their results.

Black and Litterman (1992) do provide what seems to be all the inputs to their analysis, however they 
chose a non-trivial example including partially hedged equity and bond returns.  This requires the 
application of some constraints to the reverse optimization process which we have been unable to 
formulate as of this time.  We plan on continuing this work with the goal of verifying the details of the 
Black-Litterman implementation used in Black and Litterman (1992).

Extensions to the Black-Litterman Model

In this section we will cover the extensions to the Black-Litterman model proposed in Idzorek (2005), 
Fusai and Meucci (2003), Krishnan and Mains (2006) and Qian and Gorman (2001).

Idzorek (2005) presents a means to calibrate the confidence or variance of the investors views in a 
simple and straightforward method.

Next is a section on measures of extremity or quality of views.  Fusai and Meucci (2003) propose a 
way to measure how consistent a posterior estimate of the mean is with regards to the prior, or some 
other estimate.  Braga and Natale (2007) describe how to use Tracking Error to measure the distance 
from the equilibirum to the posterior portfolio. I also include additional original work on using relative 
entropy to measure quality  of the views.

Finally, larger extensions to the model such as Krishnan and Mains (2006) present a method to 
incorporate additional factors into the model.  Qian and Gorman (2001) present a method to integrate 
views on the covariance matrix as well as views on the returns.

Idzorek's Extension

Idzorek's apparent goal was to reduce the complexity of the Black-Litterman model for non-
quantitative investors.  He achieves this by allowing the investor  to specify the investors confidence in 
the views as a percentage (0-100%) where the confidence measures the change in weight of the 
posterior from the prior estimate (0%) to the conditional estimate (100%).  This linear relation is shown
below

(40) confidence= w−wmkt/w100−wmkt

w100  is the weight of the asset under 100% certainty in the view

wmkt is the weight of the asset under no views

w is the weight of the asset under the specified view.

He provides a method to back out the value of ω required to generate the proper tilt (change in weights 
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from prior to posterior) for each view.  These values are then combined to form Ω, and the model is 
used to compute posterior estimates.

Idzorek includes τ in his formulas, but because of his use of the Alternative Reference Model and his 
formula (40) there is no need to use τ with the Idzorek method.

In his paper he discusses solving for ω using a least squares method.  We can actually solve this 
analytically5.  The next section will provide a derivation of the formulas required for this solution.

First we will use the following form of the uncertainty of the views.  Idzorek includes τ in this formula,
but he uses the Alternative Reference Model so we can drop τ from the formulation of his method.

(41) = P  PT

α, the coefficient of uncertainty, is a scalar quantity in the interval [0, ∞]. When the investor is 100% 
confident in their views, then α will be 0, and when they are totally uncertain then α will be ∞. Note 
that formula (41) is exact, it is identical to formula (39) the Ω used by He and Litterman (1999) 
because it is a 1x1 matrix.  This allows us to find a closed form solution to the problem of Ω  for 
Idzorek's confidence.

First we substitute formula (37) 

=
1

1
[P−1Q− ]

into formula (10).

w= 
−1

Which yields

(42) w=[
1

1
[P−1Q− ]]−1

Now we can solve formula (42) at the boundary conditions for α.

lim
∞

, wmk=
−1

lim
 0

, w100=P−1Q  
−1

And recombining some of the terms in (42) we arrive at

(43) w=
−1
[ 1

1 ][P−1Q  
−1
−

−1]

Substituting wmk and w100 back into (43) we get

w=wmk[ 1
1 ][w100−wmk ]

5 Thanks to Boris Gnedenko for pointing this fact out to me.
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And comparing the above with formula (40)

confidence= w−wmk/ w100−wmk 

We see that 

confidence=
1

1

And if we solve for α

(44) =1−confidence /confidence

Using formulas (44) and (41) the investor can easily calculate the value of ω for each view, and then 
roll them up into a single Ω matrix.  To check the results for each view, we then solve for the posterior 
estimated returns using formula (25) and plug them back into formula (40).  Note that when the 
investor applies all their views at once, the interaction amongst the views may pull the posterior 
estimate for individual assets away from the results generated when the views were taken one at a time.

Idzorek's method greatly simplifies the investor's process of specifying the uncertainty in the views 
when the investor does not have a quantitative model driving the process.  In addition, this model does 
not add meaningful complexity to the process.

An Example of Idzorek's Extension

Idzorek describes the steps required to implement his extension in his paper, but does not provide a 
complete worked example.  In this section I will work through his example from where he leaves off in 
the paper.

Idzorek's example includes 3 views:

• International Dev Equity will have absolute excess return of 5.25%, Confidence 25.0%

• International Bonds will outperform US bonds by 25bps, Confidence 50.0%

• US Growth Equity will outperform US Value Equity by 2%, Confidence 65.0%

In his paper Idzorek defines the steps in his method which include calculations of w100 and then the 
calculation of ω for each view given the desired change in the weights.  From the previous section, we 
can see that we only need to take the investor's confidence for each view, plug it into formula (44) and 
compute the value of alpha.  Then we plug α, P and Σ into formula (41) and compute the value of ω for 
each view.  At this point we can assemble our Ω matrix and proceed to solve for the posterior returns 
using formula (24) or (25).

In working the example, I will show the results for each view including the wmkt and w100 in order to 
make the workings of the extension more transparent.  Tables 4, 5 and 6 below each show the results 
for a single view.

Table 4 – Calibrated Results for View 1
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Asset ω wmkt w* w100% Implied Confidence

Intl Dev Equity .002126625 24.18% 25.46% 29.28% 25.00%

Table 5 – Calibrated Results for View 2

Asset ω wmkt w* w100% Implied Confidence

US Bonds .000140650 19.34% 29.06% 38.78% 50.00%

Intl Bonds .000140650 26.13% 16.41% 6.69% 50.00%

Table 6 – Calibrated Results for View 3

Asset ω wmkt w* w100% Implied Confidence

US LG .000466108 12.09% 9.49% 8.09% 65.00%

US LV .000466108 12.09% 14.69% 16.09% 65.00%

US SG .000466108 1.34% 1.05% .90% 65.00%

US SV .000466108 1.34% 1.63% 1.78% 65.00%

Table 7 – Final Results for Idzorek's Confidence Extension Example

Asset View 1 View 2 View 3 µ σ wmkt Posterior 
Weight

change

US 
Bonds

0.0 -1.0 0.0 .1 3.2  19.3%  29.6% 10.3%

Intl 
Bonds

0.0 1.0 0.0 .5 8.5  26.1%  15.8% 10.3%

US LG 0.0 0.0 0.9 6.3 24.5  12.1%   8.9% 3.2%

US LV 0.0 0.0 -0.9 4.2 17.2  12.1%  15.2% 3.2%

US SG 0.0 0.0 0.1 7.3 32.0   1.3%   1.0% -.4%

US SV 0.0 0.0 -0.1 3.8 17.9   1.3%   1.7%  .4%
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Asset View 1 View 2 View 3 µ σ wmkt Posterior 
Weight

change

Intl Dev 1.0 0.0 0.0 4.8 16.8  24.2%  26.0% 1.8%

Intl Emg 0.0 0.0 0.0 6.6 28.3   3.5%   3.5% -.0%

Total     101.8%

Return 5.2 .2 2.0

Omega/
tau

.08507 .00563 .01864

Lambda .002 -.006 -.002

Then we use the freshly computed values for the Ω matrix with all views specified together and arrive 
at the final result shown above in Table 7 blending all 3 views together.

Measuring the Impact of the Views

This section will discuss several methods used in the literature to measure the impact of the views on 
the posterior distribution.  In general we can divide these measures into two groups.  The first group 
allows us to test the hypothesis that the views or posterior contradict the prior.  The second group 
allows us to measure a distance or information content between the prior and posterior.

Theil (1971), and Fusai and Meucci (2003) describe measures that are designed to allow a hypothesis 
test to ensure the views or the posterior does not contradict the prior estimates.  Theil (1971) describes 
a method of performing a hypothesis test to verify that the views are compatible with the prior.  We 
will extend that work to measure compatibility of the posterior and the prior.  Fusai and Meucci (2003) 
describe a method for testing the compatibility of the posterior and prior when using the alternative 
reference model.

He and Litterman (1999), and Braga and Natale (2007) describe measures which can be used to 
measure the distance between two distributions, or the amount of tilt between the prior and the 
posterior.  These measures don't lend themselves to hypothesis testing, but they can potentially be used 
as constraints on the optimization process.  He and Litterman (1999) define a metric, Λ, which 
measures the tilt induced in the posterior by each view.  Braga and Natale (2007) use Tracking Error 
Volatility (TEV) to measure the distance from the prior to the posterior.

Theil's Measure of Compatibility Between the Views and the Prior

Theil (1971) describes this as testing the compatibility of the views with the prior information.  Given 
the linear mixed estimation model, we have the prior (17) and the conditional (19).

(17) xβ=π+u
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(19) pβ=q+v

The mixed estimation model defines u as a random vector with mean 0 and covariance τΣ, and v as a 
random vector with mean 0 and covariance Ω.

The approach we will take is very similar to the approach taken when analyzing a prediction from a 
linear regression.  We have two estimates of the views, the conditional estimate of the view and the 
posterior estimate of the returns.

We can define the posterior estimate as  .  We can measure the estimation error between the prior 
and the views as:

(45) ζ=(x β̂−μ)= x (β̂−β)+u

The vector ζ has mean 0 and variance V(ζ).  We will form our hypothesis test using the formulation

(46) =E V 
−1 E 

The quantity, ξ, is known as the Mahalanobis distance (multi-dimensional analog of the z-score) and is 
distributed as χ2(n).  In order to use this form we need to solve for the E(ζ) and V(ζ).

If we consider only the information in the views, the estimator of β is:

=PT


−1 P 
−1 PT


−1Q

Note that since P is not required to be a matrix of full rank that we might not be able to evaluate this 
formula as written.  We work in return space here (as opposed to view space) as it seems more natural. 
Later on we will transform the formula into view space to make it computable.

We then substitute the new estimator into the formula (45) and eliminate x as it is the identity matrix in 
the Black-Litterman application of mixed-estimation.

(47) ζ=(PT
Ω

−1 P)
−1 PT

Ω
−1 Q−β+u

Next we substitute formula (19) for Q.

ζ=(PT
Ω

−1 P)
−1 PT

Ω
−1
(Pβ+v)−β+u

ζ=(PT
Ω

−1 P)
−1
(PT

Ω
−1 P)β+(PT

Ω
−1 P )

−1 PT
Ω

−1 v−β+u
ζ=(PT

Ω
−1 P)

−1 PT
Ω

−1 v+u

Give our estimator, we want to find the variance of the estimator.

V =E  
T


V =E PT


−1 P 
−1 PT


−1 v vT


−1 P PT


−1 P 

−1
−2 PT


−1 P−1 PT


−1 v uT

uuT


But E(vu) = 0 so we can eliminate the cross term, and simplify the formula.

V =E [PT


−1 P 
−1 PT


−1v vT


−1 P PT


−1 P 

−1
uuT

]

V =E [P−1v vT
PT


−1
uuT

]

V =PT


−1 P 
−1


The last step is to take the expectation of formula (47).  At the same time we will substitute the 
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posterior estimate (μ) for β.

E (ζ )=(PT
Ω

−1 P )
−1 PT

Ω
−1 Q−Π

Now substitute the various values into (46) as follows

ξ=((PT Ω−1 P)−1 PT Ω−1Q−Π) [(PT Ω−1 P)−1+τ Σ]
−1
((PT Ω−1 P)−1 PT Ω−1Q−Π)T

Unfortunately, under the usual circumstances we cannot compute ξ.  Because P does not need to 
contain a view on every asset, several of the terms are not always computable as written. However, we 
can easily convert it to view space by multiplying by P and PT.

(48) ξ̂=(Q−P Π) [Ω+P τ ΣPT ]
−1
(Q−PΠ)T

This new test statistic statistic, ξ, in formula (48) is distributed as χ2(q) where q is the number of views. 
It is the square of the Mahalanobis distance of the posterior return estimate versus the posterior 
covariance of the estimate.  We can use this test statistic to determine if our views are consistent with 
the prior by means of a standard confidence test.

P q =1−F q

Where F(ξ) is the CDF of the χ2(q) distribution.

We can also compute the sensitivities of this measure to the views using the chain rule.

∂P
∂ q

=
∂P
∂

∂

∂ q

Substituting the various terms

(49)
∂P
∂ q

=− f (ξ)[2((Ω+P τ ΣPT
)
−1
(Q−P Π)

T
)]

Where f(ξ) is the PDF of the χ2(q) distribution.

Theil's Measure of the Source of Posterior Information

Theil (1963) describes  a measure which can be used to determine the contribution to the posterior 
precision of the prior and the views.  This measure which he calls θ sums to 1 across all sources, and 
conveniently also sums across the views if we measure the contribution of each view.

The measure for the contribution to posterior precision from the prior is

(50) θ prior=
1
n

tr (( τΣ)−1
[(τ Σ)

−1
+PT

Ω
−1 P]−1

)

where n is the number of assets.  The formula below can be used for all views by using the full matrices
P and Ω.  For a single view (i) just use the relevant slices of P and Ω.

(51) i=
1
n

tr P i
T
 i ,i

−1 P i[ 
−1
PT


−1 P ]

−1

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Formulas (50) and (51) provide the formulas we can use to compute the contribution towards the 
posterior precision from the prior and from the views. We can use this diagnostic to identify if the 
relative contributions match our intuitive view on this proportion.

Fusai and Meucci's Measure of Consistency

Next we will look at the work of Fusai and Meucci (2003).  In their paper they present a way to 
quantify the statistical difference between the posterior return estimates and the prior estimates.  This 
provides a way to calibrate the uncertainty of the views and ensure that the posterior estimates are not 
extreme when viewed in the context of the prior equilibrium estimates.

In their paper they use the Alternative Reference Model.  Their measure is analagous to Theil's 
Measure of Compatibility, but because the alternative reference model uses the prior variance of 
returns for the posterior they do not need any derivation of the variance.  We can apply a variant of 
their measure to the Canonical Reference Model as well.

They propose the use of the squared Mahalanobis distance of the posterior returns from the prior 
returns. We include τ here to match the Canonical Reference Model, but their work does not include τ 
as they use the Alternative Reference Model.

(52) M q =BL− −1BL−

It is essentially measuring the distance from the prior, μ, to the estimated returns, μBL, normalized by 
the uncertainty in the estimate.  We use the covariance matrix of the prior distribution as the 
uncertainty.  The squared Mahalanobis distance is distributed as χ2(q) where q is the number of assets.. 
This can easily be used in a hypothesis test.  Thus the probability of this event occurring can be 
computed as:

(53) P q=1−F M q

Where F(M(q)) is the CDF of the chi square distribution of M(q) with n degrees of freedom.

Finally, in order to identify which views contribute most highly to the distance away from the 
equilibrium, we can also compute sensitivities of the probability to each view.  We use the chain rule to
compute the partial derivatives

∂P q 
∂ q

=
∂P
∂M

∂M
∂BL

∂BL

∂ q

(54)
∂P q 
∂ q

=− f M  [2 BL−  ][P P
−1 P ]

Where f(M) is the PDF of the chi square distribution with n degrees of freedom for M(q).  Note that 
this measure is very similar to (49) Theil's measure of compatibility between the prior and the views.

They work an example in their paper which results in an initial probability of 94% that the posterior is 
consistent with the prior.  They specify that their investor desires this probability to be no less than 
95% (a commonly used confidence level in hypothesis testing), and thus they would adjust their views 
to bring the probability in line.  Given that they also compute sensitivities, their investor can identify 
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which views are providing the largest marginal increase in their measure and they investor can then 
adjust these views.  These sensitivities are especially useful since some views may actually be pulling 
the posterior towards the prior, and the investor could strengthen these views, or weaken views which 
pull the posterior away from the prior.  This last point may seem non-intuitive.  Given that the views 
are indirectly coupled by the covariance matrix, one would expect that the views only push the 
posterior distribution away from the prior.  However, because the views can be conflicting, either 
directly or via the correlations, any individual view can have a net impact pushing the posterior closer 
to the prior, or pushing it further away.

They propose to use their measure in an iterative method to ensure that the posterior is consistent with 
the prior to the specified confidence level.

With the Canonical Reference Model we could rewrite formula (52) using the posterior variance of the 
return instead of τΣ yielding:

(55) M q = BL−  
−1
PT


−1 P 

−1
 BL− 

Otherwise their Consistency Measure and it's use is the same for both reference models.

He and Litterman Lambda

He and Litterman (1999) use a measure, Λ, to measure the impact of each view on the posterior.  They 
define the Black-Litterman unconstrained posterior portfolio as a blend of the equilibrium portfolio 
(prior) and a contribution from each view, that contribution is measured by Λ.

Deriving the formula for Λ we will start with formula (10) and substitute in the various values from the
posterior distribution.

w=
−1 

We substitute the return from formula (0) for 

(56) w=
1



−1 M−1

[ 
−1
PT


−1Q ]

We will first simplify the covariance term

© Copyright 2007-14, Jay Walters
37




−1 M −1

=M−1

−1 M −1


−1 M −1

= M I −1


−1 M −1

=
−1


−1
M 

−1


−1 M −1

=
−1


−1


−1
P

−1 PT

−1


−1 M −1

=
−1

1




−1
P

−1 PT

−1


−1 M −1

=PT
  P 

−1
[1PT

 P 
−1


−1
]
−1


−1 M −1

=PT
  P 

−1
[
P

T
 P 

1
−
P

T
  P 

1

P
T
 P 

1
[





PT  P
1

]
−1

]


−1 M −1

=


1
[ I−

PT  P 

1






PT  P
1


−1

]

Then we can define

(57) A=[ 
PT

 P
1 ]

And finally rewrite as

(58) 
−1 M −1

=


1
[ I−PT A−1 P



1
]

Our goal is to simplify the formula to the form

w=
1

1
{w eqPT

 }

We use the multiplier, 
1

1
, because in the Black-Litterman Reference Model the investor is not 

fully invested in the prior (equilibrium) portfolio.

In order to find Λ we substitute formula (58) into (56) and then gather terms.

w=
1




1 [ I−PT A−1 P 


1
][ 

−1
PT


−1Q ]

w=
1




1 [ −1
−PT A−1 P 



1
PT


−1Q−PT A−1 P



1
PT


−1Q]

w=
1

1 {weqPT[−A−1 P 
1

 1



−1 Q


−A−1 P



1
 PT


−1Q]}

w=
1

1 {weqPT[ 
−1 Q−

A−1 P  w eq

1
−A−1 

1
PT

 P 


−1Q
 ]}
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So we can see that along with (57), the following formula defines Λ.

(59) =





−1 Q−
A−1 P w eq

1
−A−1 

1
P  PT




−1 Q


He and Litterman Λ represents the weight on each of the view portfolios on the final posterior weight.  
As a result, we can use Λ as a measure of the impact of our views.

We can also derive the He and Litterman Λ for the Alternative Reference Model, we will call this ΛA. 
We start from the same reverse optimization formula.

w=
−1 

We substitute the return from formula (24) for  , but we use the prior covariance matrix as we are 
using the Alternative Reference Model.

(60) w=
1



−1


−1
PT


−1 P 

−1
[ 

−1
PT


−1Q ]

We will first simplify the covariance term using the Woodbury Matrix Identity.

= −1
 

−1
PT


−1 P 

−1

= I−1−I−1 PT P  I−1 PT −1 P  I−1

= I−PT
P  PT


−1 P 

Then we can define

AA=PT
 P

Then we can substitute the above result back into formula (43) and expand the terms.

w=
1

 I−PT AA

−1 P [
−1
PT


−1 Q ]

w=
1



−1
PT


−1 Q−PT AA

−1 P −PT AA
−1 P  PT


−1Q

w=


−1





1


PT [−1 Q−AA
−1 P −AA

−1 P  PT −1Q ]

w=


−1





1


PT [−1 Q−AA
−1 P  weq−AA

−1 P  PT


−1Q]

He and Litterman Λ takes the similar form in the Alternative Reference Model as shown below.

w=weqPT
A

Note that in the Alternative Reference Model, the investor's prior portfolio has the exact same weights 
as the equilibrium portfolio.

We can see that the following formula defines ΛA.
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(61)  A=


−1Q


−AA
−1 P  weq−AA

−1 P  PT 
−1Q


Braga and Natale and Tracking Error Volatility

Braga and Natale (2007) propose the use of tracking error between the posterior and prior portfolios as 
a measure of distance from the prior.  Tracking error is commonly used by investors to measure risk 
versus a benchmark, and can be used as an investment constraint.  As it is so commonly used, most 
investors have an intuitive understanding and a level of comfort with TEV. Tracking error volatility is 
defined as

(62) TEV=wactv
T  wactv where wactv= w−w r

Where
wactv Active weights, or active portfolio
w Weight in the investor's portfolio
w r Weight in the reference portfolio
 Covariance matrix of returns

They also derive the formula for tracking error sensitivities as follows:  Given that 

TEV= f wactv

and we can further refine 

wactv=g q where q represents the views

Then we can use the chain rule to decompose the sensitivity of TEV to the views

(63)
∂TEV
∂q

=
∂TEV
∂wactv

∂wactv

∂q

We can solve for the first term of formula (63) directly,

∂TEV
∂wactv

=∂
wactv

T
wactv

∂wactv

Let x=wactv
T  wactv , then apply the chain rule

∂TEV
∂wactv

=
∂TEV
∂ x

∂ x
∂wactv

∂TEV
∂wactv

=[
1

2wactv
T

 wactv

] [2 wactv ]

∂TEV
∂wactv

=
 wactv

wactv
T  wactv
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Solving for the second term of formula (63) is slightly more complicated.

∂wactv

∂ q
=
∂ w−w ref 

∂q
∂wactv

∂ q
=
∂

−1 E  r − −1


∂ q
∂wactv

∂ q
=

−1∂E  r −

∂ q
∂wactv

∂ q
=

−1
∂
  PT

[P  PT
]

−1
[Q−P ]

∂Q
∂wactv

∂ q
=

−1
 PT

[P  PT
]

−1

∂wactv

∂ q
=

1


PT
[ P  PT





]
−1

This result is somewhat different from that found in the Braga and Natale (2007) paper because we use 
the form of the Black-Litterman model which requires less matrix inversions.  The formula for the 
sensitivities is

(64)
∂TEV
∂ q

=
 wactv

wactv
T

 wactv

1


PT [P  PT




 ]
−1

We can come up with the equivalent metric for the Canoni6`1cal Reference Model model quite easily.  
If we just notice that in a tracking error scenario, the covariance matrix should be the most accurate 
which would be the posterior covariance matrix.

∂TEV
∂ q

=
 wactv

wactv
T  wactv

∂wactv

∂q

∂TEV
∂ q

=
 wactv

wactv
T  wactv

PT

1

∂

∂ q

Yielding the TEV sensitivities for the Canonical Reference Model.

(65)
∂TEV
∂ q

=
wactv

wactv
T wactv

PT

1 [ −1−A−1 

1
P  PT 


−1

 ]
Braga and Natale work through a fairly simple example in their paper, but they do not provide all the 
raw data required to reproduce their results.  I have been unable to reproduce either their equilibrium or
their mixing results.  Given their posterior distribution as presented in the paper one can easily 
reproduce their TEV results.

One advantage of the TEV is that most investors are familiar with it, and so they will have some 
intuition as to what it represents.  The consistency metric introduced by Fusai and Meucci (2003) will 
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not be as familiar to investors.

Metrics Introduced in Herold (2003)

Herold (2003) discusses the concept of diagnostics which an investor can apply to their model in order 
to validate the outputs.  One of these diagnostics is the correlation between views as one diagnostic 
which can be used to determine how the updated portfolio may perform.  By examining the correlation 
matrix of the views P  Pt we can determine how correlated the views are. If the views are highly 
correlated then we can expect all views to contribute to out performance if they are correct and 
underperformance if they are incorrect.  If the views are not highly correlated then we can expect a 
diversified contribution to performance.

As an example, if we use He and Litterman's data and their two views we compute this measure as

P  P t
=[0.0213 0.0020

0.0020 0.0170]
The off-diagonal elements, 0.0020, are one order of magnitude smaller than the on-diagonal elements,  
(0.0213 and 0.0170).   This difference indicates that the  views are not strongly correlated.  This is 
consistent with He and Littermans' specification of the two views on mutually exclusive sets of assets 
which are loosely correlated.

Herold (2003) also discusses the marginal contribution to tracking error by view.  This is the same 
metric computed by Braga and Natale, though he proposes deriving the formula for it's calculation 
from the Alternative Reference Model version of He and Litterman's Λ, ΛA.

Herold (2003) considers the case of Active Management, which means that the Black-Litterman model 
is being applied to an active management overlay on some portfolio.  The prior distribution in this case 
corresponds to weq = 0.  The posterior weights are the overlay weights.  He uses the Alternative 
Reference Model and computes a quantity, Φ, which is the active management version of ΛA.

 A=
−1Q


−AA

−1 P  weq−AA
−1 P  PT 

−1Q


but weq=0, so

=


−1 Q


−AA
−1 P  PT 

−1 Q


where wactv=PT


Herold starts from formula (62) just as Braga and Natale, but then uses an alternative formula for 
tracking error. 

 

TEV=wactv
T

w actv where wactv= w−w r

 and also 
wactv= w−weq=PT



TEV=T P  PT

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Then we can just take 
TEV
Q

to find the marginal contribution to tracking error by views.  By the 

chain rule

TEV
Q

=
TEV


×


Q
TEV
Q

=
P PT 

 P  PT 
×

1


[−1
−P  PT


−1 P  PT


−1 ]

Note that we could perform the same calculation for the Canonical Reference Model using He and 
Littermans' Λ, but we would also need to use the posterior covariance of the distribution rather than 
just Σ in the calculations.

A Demonstration of the Measures

Now we will work a sample problem to illustrate all of the metrics, and to provide some comparison of 
their features. We will start with the equilibrium from He and Litterman (1999) and for Example 1 use 
the views from their paper, Germany will outperform other European markets by 5% and Canada will 
outperform the US by 4%.

Table 8 – Example 1 Returns and Weights, equilibrium from He and Litterman, (1999).

Asset P0 P1 μ μeq weq/(1+τ)  w* w* - weq/(1+τ)

Australia 0.0 0.0 4.45 3.9 1.50% 1.5% 0.0%

Canada 0.0 1.0 9.06 6.9   2.1% 53.3% 51.2%

France -0.295 0.0 9.53 8.4   5.0% -3.3% -8.3%

Germany 1.0 0.0 11.3 9   5.2% 33.1% 27.9%

Japan 0.0 0.0 4.65 4.3  11.0% 11.0% 0.0%

UK -0.705 0.0 6.98 6.8  11.8% -7.8% -19.6%

USA 0.0 -1.0 7.31 7.6  58.6% 7.3% -51.3%

q 5.0 4.0

ω/τ 0.02 .017

Table (8) illustrates the results of applying the views and Table (0) displays the various impact 
measures.

Table 9 - Impact Measures for Example 1
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Measure Value (Confidence Level) Sensitivity (V1) Sensitivity (V2)

Theil's Measure 1.672 (43.3%) -5.988 -11.46

Theil's θ 0.858 (prior) 0.0712 0.0712

Fusai and Meucci's Measure 0.8728 (99.7%) -0.1838 -0.3327

Λ 0.2920 0.5380

TEV 8.28% 0.688 1.294

If we examine the change in the estimated returns vs the equilibrium, we see where the USA returns 
decreased by only 29 bps, but the allocation decreased 51.25% caused by the optimizer favoring 
Canada whose returns increased by 216 bps and whose allocation increased by 51.25%.  This shows 
that what appear to be moderate changes in return forecasts can cause very large swings in the weights 
of the assets, a common issue with unconstrained mean variance optimization.  Here we use 
unconstrained mean variance optimization not because we have to, but because it is well understood 
and transparent.

Next looking at the impact measures, Theil's measure indicates that we can be confident only at the 
43% level that the views are consistent with the prior.  If we examine the diagram (5) we can see that 
indeed these views are significantly different from the prior.  Fusai and Meucci's measure of 
compatibility of the prior and posterior on the other hand comes with a confidence level of 99.8% so 
they are much more confident that the posterior is consistent with the prior.  A major difference in their
approaches is that Theil is working in view space, which for our example has order = 2 whilst Fusai 
and Meucci are working in asset space which has order = 7.

All of the metrics' sensitivities to the views indicate that the second view has a relative weight just 
about twice as large as the first view, so the second view contributes much more to the change in the 
weights.

The TEV of the posterior portfolio is 8.28% which is significant in terms of how closely the posterior 
portfolio will track the equilibrium portfolio. This seems to be a very large TEV value given the 
scenario we're working with

Next we change our confidence in the views by multiplying the variance by 2, this will increase the 
change from the prior to the posterior and allow us to make some judgements based on the impact 
measures.

Table 10 – Example 2 Returns and Weights, equilibrium from He and Litterman, (1999).

Asset P0 P1 μ weq/(1+τ)  w* w* - weq/(1+τ)

Australia 0.0 0.0 4.72   1.5% 1.5% 0.0%

Canada 0.0 1.0 10.3   2.1% 22.7% 20.6%
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Asset P0 P1 μ weq/(1+τ)  w* w* - weq/(1+τ)

France -0.295 0.0 10.2   5.0% 1.6% -3.4%

Germany 1.0 0.0 12.4   5.2% 16.8% 11.6%

Japan 0.0 0.0 4.84  11.0% 11.0% 0.0%

UK -0.705 0.0 7.09  11.8% 3.7% -8.1%

USA 0.0 -1.0 7.14  58.6% 38.0% -20.6%

q 5.0 4.0

ω/τ 0.09 0.07
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Table 11 - Impact Measures for Example 2
Measure Value (Confidence Level) Sensitivity (V1) Sensitivity (V2)

Theil's Measure 1.537 (46.4%) -4.27 -12.39

Theils θ 0.88 0.05 0.07

Fusai and Meucci's Measure 0.7479 (99.8%) -0.06 -0.24

Λ 0.193 0.544

TEV 7.67% 0.332 1.406

Examining the updated results in Table (10) we see that the changes to the forecast returns have 
decreased consistent with our increased uncertainty in the views.  We now have an 20% increase in the 
allocation to Canada and an 20% decrease in the allocation to the USA.  From Table (11) we can see 
that Theil's measure has increased, but only a fraction and we continue to have little confidence that the
views our consistent with the prior.  Fusai and Meucci's measure now is 99.8% confident that the 
posterior is consistent with the prior.  It is unclear in practice what bound we would want to use, but 
their measure usually presents which a much higher confidence than Theil's measure.  The TEV has 
decreased, and is now 7.67% which is not significantly smaller.

Once again all the sensitivities show the second view having more of an impact on the final weights.

Across both  scenarios we can draw some conclusions about these various measures.  Theil's 
consistency measure test ranged from a high of 46% confident to a low of 44% confident that the views
were consistent with the prior estimates.  This measure is very sensitive and it is unclear what would be
a good confidence threshold.  50% does seem intuitively appealing.

Fusai and Meucci's Consistency measure ranged from 98.38% to 99.98% confident,  indicating that the 
posterior estimates was generally highly consistent with the prior.  Fusai and Meucci present that an 
investor may have a requirement that the confidence level be 5%.  In light of these results that would 
seem to be a fairly large value.  The sensitivities of the Consistency measure scale with the measure, 
and for low values of the measure the sensitivities are very low.

Theil's θ changed with the confidence of the views and generally indicated that much of the 
information in the posterior originated with the prior.  It moved intuitively with the changes in 
confidence level.

Across the two scenarios the TEV decreased by 61bps, but against a starting point of 8.28% it still 
indcates large active weights. It is not clear what a realistic threshold for the TEV is in this case, but 
these values are likely towards the upper limit that would be tolerated.  Note that between the two 
scenarios, the sensitivity to the first view dropped by 50% which is consistent with the change in 
confidence that we applied.

In analyzing these various measures of the tilt caused by the views, the TEV of the weights measures 
the impact of the views and the optimization process, which we can consider as the final outputs.  If the
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investor is concerned about limits on TEV, they could be easily added as constraints on the 
optimization process.

He and Litterman's Lambda measures the weight of the view on the posterior weights, but only in the 
case of an unconstrained optimization.  This makes it suitable for measuring impact and being a part of 
the process, but it cannot be used as a constraint in the optimization process.

Theil's compatibility measure and Fusai and Meucci's consistency measure measure the posterior 
distribution, including the returns and the covariance matrix. The former in view space the latteri in 
asset space.

Active Management and the Black-Litterman Model

We will consider Active Management to be the case when our investor is managing an overlay 
portfolio on top of a 100% invested passive benchmark portfolio.  In this case we are only interested in 
the overlay, and not in the benchmark so we start with a prior distribution with 0 active weights and 0 
expected excess returns over the benchmark. All returns to views input to the model are relative to the 
equilibrium benchmark returns rather than to the risk free rate.  The weights are for the active portfolio,
so the weights should always sum to 0.

Herold (2003) discusses the application of the Black-Litterman model to the problem of Active 
Management.  He introduces  a measure Φ which is He and Litterman's ΛA modified for Active 
Management.  When we use the Black-Litterman model for Active Management versus a passive 
benchmark portfolio, then the equilibrium weights (weq) are 0, and the thus the equilibrium returns (Π) 
are also 0.

Because the value Π = 0 the middle term in He and Litterman's ΛA  disappears.

(66) =
1


[−1Q−P  PT


−1 P  PT


−1Q ]

Two-Factor Black-Litterman

Krishnan and Mains (2005) developed an extension to the alternate reference model which allows the 
incorporation of additional uncorrelated market factors.  The main point they make is that the Black-
Litterman model measures risk, like all MVO approaches, as the covariance of the assets. They 
advocate for a richer measure of risk. They specifically focus on a recession indicator, given the thesis 
that many investors want assets which perform well during recessions and thus there is a positive risk 
premium associated with holding assets which do poorly during recessions.  Their approach is general 
and can be applied to one or more additional market factors given that the market has zero beta to the 
factor and the factor has a non-zero risk premium.

They start from the standard quadratic utility function (6), but add an additional term for the new 
market factor(s).

(67) U=wT −
0

2
wT w−∑

j=1

n

 j w
T  j
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U is the investors utility, this is the objective function during portfolio optimization.
w is the vector of weights invested in each asset
Π is the vector of equilibrium excess returns for each asset
Σ is the covariance matrix for the assets
δ0 is the risk aversion parameter of the market
δj is the risk aversion parameter for the j-th additional risk factor
βj is the vector of exposures to the j-th additional risk factor

Given their utility function as shown in formula (67) we can take the first derivative with respect to w 
in order to solve for the equilibrium asset returns.

(68) =0 w∑
j=1

n

 j j

Comparing this to formula (7), the simple reverse optimization formula, we see that the equilibrium 
excess return vector (Π) is a linear composition of (7) and a term linear in the βj  values.  This matches 
our intuition as we expect assets exposed to this extra factor to have additional return above the 
equilibrium return.

We will further define the following quantities:

rm as the return of the market portfolio.
fj as the time series of returns for the factor
rj as the return of the replicating portfolio for risk factor j.

In order to compute the values of δ we will need to perform a little more algebra.  Given that the 
market has no exposure to the factor, then we can find a weight vector, vj, such that vj

T βj = 0. In order 
to find vj we perform a least squares fit of ∣∣ f j−v j

T
∣∣  subject to the above constraint.  v0 will be 

the market portfolio, and v0βj = 0  j by construction.  We can solve for the various values of δ by 
multiplying formula (68) by v and solving for δ0.

v0
T = 0 v0

T v0∑
j=1

n

 j v0
T  j

By construction  v0βj = 0, and v0 Π = rm, so

0=
r m

v0
T
 v0

For any j ≥ 1 we can multiply formula (68) by vj and substitute  δ0 to get 

v j
T = 0 v j

T v j∑
i=1

n

i v j
T i

Because these factors must all be independent and uncorrelated, then viβj = 0  i ≠ j so we can solve for
each δj.
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 j=
r j−0 v j

T
 v j

v j
T
 j

The authors raise the point that this is only an approximation because the quantity ∣∣ f j−v j
T
∣∣  may 

not be identical to 0. The assertion that  viβj = 0  i ≠ j may also not be satisfied for all i and j.  For the 
case of a single additional factor, we can ignore the latter issue.

In order to transform these formulas so we can directly use the Black-Litterman model, Krishnan and 
Mains change variables, letting

=−∑
j=1

n

 j j

Substituting back into (67) we are back to the standard utility function

U=wT −
 0

2
wT

 w

and from formula (13)

P =P −∑
j=1

n

 j j

P =P −∑
j=1

n

 j P  j

thus

Q=Q−∑
j=1

n

 j P  j

We can directly substitute   and Q into formula (25) for the posterior returns in the Black-
Litterman model in order to compute returns given the additional factors.  Note that these additional 
factor(s) do not impact the posterior variance in any way.

Krishnan and Mains work an example of their model for world equity models with an additional 
recession factor.  This factor is comprised of the Altman Distressed Debt index and a short position in 
the S&P 500 index to ensure the market has a zero beta to the factor.  They work through the problem 
for the case of 100% certainty in the views.  They provide all of the data needed to reproduce their 
results given the set of formulas in this section.  In order to perform all the regressions, one would need
to have access to the Altman Distressed Debt index along with the other indices used in their paper.

Qian and Gorman

Qian and Gorman (2001) discuss a method to provide both a conditional mean estimate and a 
conditional covariance estimate.  They use a Bayesian framework and reference the Black-Litterman 
model.  They use the alternative reference model as τ does not appear in their paper and they neglect 
the conditional (or posterior) covariance estimate.

In this section we will compare the Qian and Gorman approach with the approach taken in the Black-
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Litterman Reference Model.

We can match the variance portion of Qian and Gorman's formula (15) our label (QG 15) with our 
formula (30) if we set Ω = 0, and remove τ (this is the alternative reference model). This describes the 
scenario where the investor has 100% confidence in their views.  For those assets where the investor 
has absolute views then the variance of the posterior estimate will be zero.  For all other assets, the 
posterior variance will be non-zero.

(QG 15) ~N [0,− PT
v 

−1
P ]

where v=P  PT

Var =− PT
P  PT


−1
P 

(30) M= − PT
P PT


−1 P 

setting  Ω = 0 and removing τ

M=− PT
P  PT


−1 P 

In order to get to Qian and Gorman's formula 17 (QG 17), we need to re-introduce the covariance of 
the views, Ω, but rather than mix the covariances as is done in the Black-Litterman model, we rely on 
their lack of correlation and just add the two variance terms.  We take the variance of the conditional 
from (13).

Var =− PT
P  PT


−1
 PT

PT


−1 P
−1

Var = PT
P  PT


−1
 PT

 PT
P  PT


−1
P  PT


−1
 P

(69) Var = PT
P  PT


−1
P  PT


−1
−P  PT


−1
 PT



Note that formula (69) exactly matches (QG 17).

(QG 17) = PT v
−1 v v

−1−v
−1P 

where v=P  PT  and v= . substituting

= PT
P  PT


−1
P  PT


−1
−P  PT


−1
P 

Qian and Gorman demonstrate a conditional covariance which is not derived from either Theil's mixed 
estimation nor Bayesian updating.  It's behavior may increase the variance of the posterior vs the prior 
in the event that the view variance is larger than the prior variance.  They describe this as allowing the 
investor to have a view on the variance, and they do not suggest that Ω needs to be diagonal.  In this 
model the conditional covariance is proportional to the investor's views on variance, but the blending 
process is not clear.

Compare this formula to our formula (30) for the variance of the posterior mean estimate.

M= − PT
P PT


−1 P 

Intuition tells us that the updated posterior estimate of the mean will be more precise (lower variance) 
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than the prior estimate, thus we would like the posterior (conditional) variance to always be less than 
the prior variance.  The Black-Litterman posterior variance achieves this goal and arrives at the well 
known result of Bayesian analysis in the case of unknown mean and known precision.  As result, it 
seems we should favor these results over Qian and Gorman.

Future Directions

Future directions for this research include reproducing the results from the original papers, either Black
and Litterman (1991) or Black and Litterman (1992).  These results have the additional complication of
including currency returns and partial hedging.

Later versions of this document should include more information on process and a synthesized model 
containing the best elements from the various authors.  A full example from the CAPM equilibrium, 
through the views to the final optimized weights would be useful, and a worked example of the two 
factor model from Krishnan and Mains (2005) would also be useful.

Meucci (2006) and Meucci (2008) provide further extensions to the Black-Litterman Model for non-
normal views and views on parameters other than return.  This allows one to apply the Black-Litterman
Model to new areas such as alternative investments or derivatives pricing.  His methods are based on 
simulation and do not provide a closed form solution.  Further analysis of his extensions will be 
provided in a future revision of this document.

An Asset Allocation Process Using the Black-Litterman Model

When used as part of an asset allocation process, the Black-Litterman model provides for estimates 
which lead to more stable and more diversified portfolios than estimates derived from historical returns
when used with unconstrained mean-variance optimization.  Because of this property an investor using 
mean-variance optimization is less likely to require artificial constraints to get a portfolio without 
extreme weights.  Unfortunately using this model requires a broad variety of data, some of which may 
be hard to find.

First, the investor needs to identify their investable universe and find the market capitalization of each 
asset.  Then, they need to estimate a covariance matrix for the excess returns of the assets.  This is most
often done using historical data for an appropriate time window. Both Litterman (2003), and Bevan and
Winkelmann (1998) provide details on the process used to compute covariance matrices at Goldman 
Sachs. In the literature, monthly covariance matrices are most commonly estimated from 60 months of 
historical excess returns.  If the actual asset return itself cannot be used, then an appropriate proxy can 
be used, e.g. S&P 500 Index for US Domestic Large Cap equities. The return on a short term sovereign
bond, e.g US 4 or 13-week treasury bill, would suffice for most United States investor's risk free rate.

When applied to the asset allocation problem, finding the market capitalization information for liquid 
asset classes might be a challenge for an individual investor, but likely presents little obstacle for an 
institutional investor because of their access to index information from the various providers.  Given 
the limited availability of market capitalization data for illiquid asset classes, e.g. real estate, private 
equity, commodities, even institutional investors might have a difficult time piecing together adequate 
market capitalization information. Return data for these same asset classes can also be complicated by 
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delays, smoothing and inconsistencies in reporting.  Further complicating the problem is the question of
how to deal with hedge funds or absolute return managers.  The question of whether they should be 
considered a separate asset class is beyond the scope of this paper.

Next, the investor needs to quantify their views so that they can be applied and new return estimates 
computed.  The views can be derived from quantitative or qualitative processes, and can be complete or
incomplete, or even conflicting.

Finally, the outputs from the model need to be fed into a portfolio selection model to generate the 
efficient frontier, and an efficient portfolio selected.  Bevan and Winkelmann (1999) provide a 
description of their asset allocation process (for international fixed income) and how they use the 
Black-Litterman model within that process.  This includes their approaches to calibrating the model 
and information on how they compute the covariance matrices.

The standard Black-Litterman model does not provide direct sensitivity of the prior to market factors 
besides the asset returns.  It is fairly simple to extend the Black-Litterman model to use a multi-factor 
model for the prior distribution.  Krishnan and Mains (2005) have provided extensions to the model 
which allow adding additional cross asset factors which are not priced in the market.  Examples of such
factors are a recession, or credit, market factor.  Their approach is general and could be applied to other
factors if desired.

Most of the Black-Litterman literature reports results using the closed form solution for unconstrained 
mean variance optimization. They also tend to use non-extreme views in their examples. We believe 
this is done to keep the papers simple, but it is also a testament to the stability of the outputs of the 
Black-Litterman model that useful results can be generated via this process. As part of a investment 
process, it is reasonable to conclude that some constraints would be applied at least in terms of 
restricting short selling and limiting concentration in asset classes.  Lack of a budget constraint is also 
consistent with a Bayesian investor who may not wish to be 100% invested in the market due to 
uncertainty about their beliefs in the market.  portfolio selection is normally considered as part of a two
step process, first compute the optimal portfolio, and then determine position along the Capital Market 
Line.

For the ensuing discussion, we will refer to the CAPM equilibrium distribution as the prior distribution,
and the investors views as the conditional distribution.  This is consistent with the original Black and 
Litterman (1992) paper. It also is consistent with our intuition about the outcome in the absence of a 
conditional distribution (no views in Black-Litterman terminology.)  This is the opposite of the way 
most examples of Bayes Theorem are defined, they start with a non-statistical prior distribution, and 
then add a sampled (statistical) distribution of new data as the conditional distribution. The mixing 
model we will use, and our use of normal distributions, will bring us to the same outcome independent 
of these choices.

An Asset Allocation Process

The Black-Litterman model is just one part of an asset allocation process.  Bevan and Winkelmann 
(1998) document the asset allocation process they use in the Fixed Income Group at Goldman Sachs. 
At a minimum. a Black-Litterman oriented investment process would have the following steps:
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● Determine which assets constitute the market

● Compute the historical covariance matrix for the assets

● Determine the market capitalization for each asset class.

● Use reverse optimization to compute the CAPM equilibrium returns for the assets

● Specify views on the market

● Blend the CAPM equilibrium returns with the views using the Black-Litterman model

● Feed the estimates (estimated returns, covariances) generated by the Black-Litterman model 
into a portfolio optimizer.

● Select the efficient portfolio which matches the investors risk preferences

A further discussion of each step is provided below.

The first step is to determine the scope of the market.  For an asset allocation exercise this would be 
identifying the individual asset classes to be considered.  For each asset class the weight of the asset 
class in the market portfolio is required.  Then a suitable proxy return series for the excess returns of 
the asset class is required.  Between these two requirements it can be very difficult to integrate illiquid 
asset classes such as private equity or real estate into the model.  Furthermore, separating public real 
estate holdings from equity holdings (e.g. REITS in the S&P 500 index) may also be required.  Idzorek 
(2006) provides an example of the analysis required to include commodities as an asset class.

Once the proxy return series have been identified, and returns in excess of the risk free rate have been 
calculated, then a covariance matrix can be calculated.  Typically the covariance matrix is calculated 
from the highest frequency data available, e.g. daily, and then scaled up to the appropriate time frame.  
Investor's often use an exponential weighting scheme to provide increased weights to more recent data 
and less to older data.  Other filtering (Random Matrix Theory) or shrinkage methods could also be 
used in an attempt to impart additional stability to the process.

Now we can run a reverse optimization on the market portfolio to compute the equilibrium excess 
returns for each asset class.  Part of this step includes computing a δ value for the market portfolio. This
can be calculated from the return and standard deviation of the market portfolio.  Bevan and 
Winkelmann (1998) discuss the use of an expected Sharpe Ratio target for the calibration of δ.  For 
their international fixed income investments they used an expect Sharpe Ratio of 1.0 for the market.  
The investor then needs to calibrate τ in some manner.  This value is usually on the order of 0.025 ~ 
0.050.

At this point almost all of the machinery is in place.  The investor needs to specify views on the market.
These views can impact one or more assets, in any combination.  The views can be consistent, or they 
can conflict.  An example of conflicting views would be merging opinions from multiple analysts, 
where they may not all agree.  The investor needs to specify the assets involved in each view, the 
absolute or relative return of the view, and their uncertainty in the return for the view consistent with 
their reference model and measured by one of the methods discussed previously.

Appendix D shows the process of cranking through formulas (25), (30) and (27) to compute the new 
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posterior estimate of the returns and the covariance of the posterior returns.  These values will be the 
inputs to some type of optimizer, a mean-variance optimizer being the most common.  If the user 
generates the optimal portfolios for a series of returns, then they can plot an efficient frontier.
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Appendix A

This appendix includes the derivation of the Black-Litterman master formula using Theil's Mixed 
Estimation approach which is based on Generalized Least Squares.

Theil's Mixed Estimation Approach

This approach is from Theil (1971) and is similar to the reference in the original Black and Litterman, 
(1992) paper. Koch (2005) also includes a derivation similar to this.

If we start with a prior distribution for the returns.  Assume a linear model such as

A.1 =x u

Where π is the mean of the prior return distribution, β is the expected return and u is the normally 
distributed residual with mean 0 and variance Φ.

Next we consider some additional information, the conditional distribution.

A.2 q= pv

Where q is the mean of the conditional distribution and v is the normally distributed residual with mean
0 and variance Ώ.

Both Ώ and Σ are assumed to be non-singular.

We can combine the prior and conditional information by writing:

A.3 [q ]=[ x
p][u

v ]
Where the expected value of the residual is 0, and the expected value of the variance is

E [u
v ][u ' v ' ]]=[ 0

0 ]
We can then apply the generalized least squares procedure, which leads to estimating β as

A.4 =[[ x p ][ 0
0  ]

−1

[ x '
p ' ]]

−1

[ x ' p ' ][ 0
0  ]

−1

[q ]
This can be rewritten without the matrix notation as

A.5 =[ x−1 x 'p−1 p ' ]
−1

[ x '−1
 p '−1 q ]

We can derive the expression for the variance using similar logic.  Given that the variance is the 
expectation of  −

2 , then we can start by substituting formula A.3 into A.5
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A.6 =[ x−1 x 'p−1 p ' ]
−1

[ x ' −1
x up ' −1

 p v ]

This simplifies to

=[ x−1 x p1 p ' ]
−1

[ x −1 xp ' −1 p x−1 up−1 v ]

=[ x−1 x 'p−1 p ' ]
−1

[ x−1 x ' p−1 p '  ][ x−1 x 'p1 p ' ]
−1

[ x−1 u p−1 v ]

=[ x−1 x ' p1 p ' ]
−1

[ x−1 up−1 v ]

A.7 −=[ x−1 x ' p1 p ' ]
−1

[ x−1 up−1 v ]

The variance is the expectation of formula A.7 squared.

E  −
2
=[ x−1 xT

 p1 pT ]
−1

[ x−1 uT
p−1 vT ]

2

E  −
2
=[ x−1 xT

 p1 pT ]
−2

[ x−1uT u−1 xT
p−1 vT v−1 pT

x−1 uT v−1 pT
 p−1 vT u−1 xT ]

We know from our assumptions above that E uu ' = , E vv ' = and E uv ' =0 because u
and v are independent variables, so taking the expectations we see the cross terms are 0

E  −
2
=[ x−1 xT

 p−1 pT ]
−2 [x−1


−1 xT

 p−1


−1T

00 ]

E  −
2
=[ x−1 xT

 p−1 pT ]
−2

[ x−1 xT
p−1 pT ]

And we know that for the Black-Litterman model, x is the identity matrix and = so after we 
make those substitutions we have

A.8 E  −
2
=[

−1
p−1 pT ]

−1
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Appendix B

This section provides a quick overview of the relevant portion of Bayes theory in order to create a 
common vocabulary which can be used in analyzing the Black-Litterman model from a Bayesian point 
of view.

A Quick Introduction to Bayes Theory

Bayes theory states

(70) P A∣B=
P B∣AP A

P B

P(A|B) The conditional (or joint) probability of A, given B  Also known as the posterior 
distribution.  We will call this the posterior distribution from here on.

P(B|A) The conditional probability of B given A.  Also know as the sampling 
distribution.  We will call this the conditional distribution from here on.

P(A) The probability of A.  Also known as the prior distribution.  We will call this the 
prior distribution from here on.

P(B) The probability of B. Also known as the normalizing constant.

When actually applying this formula and solving for the posterior distribution, the normalizing constant
will disappear into the constants of integration so from this point on we will ignore it..

A general problem in using Bayes theory is to identify an intuitive and tractable prior distribution. One 
of the core assumptions of the Black-Litterman model (and Mean-Variance optimization) is that asset 
returns are normally distributed.  For that reason we will confine ourselves to the case of normally 
distributed conditional and prior distributions. Given that the inputs are normal distributions, then it 
follows that the posterior will also be normally distributed.  When the prior distribution and the 
posterior have the same structure, the prior is known as a  conjugate prior.  Given interest there is 
nothing to keep us from building variants of the Black-Litterman model using different distributions, 
however the normal distribution is generally the most straight forward.

Another core assumption of the Black-Litterman model is that the variance of the prior and the 
conditional distributions about the actual mean are known, but the actual mean is not known.  This 
case, known as “Unknown Mean and Known Variance” is well documented in the Bayesian literature.  
This matches the model which Theil uses where we have an uncertain estimate of the mean, but know 
the variance.

We define the significant distributions below:

The prior distribution

(71) P(A) ~ N(x,S/n)

where S is the sample variance of the distribution about the mean, with n samples then S/n is the 
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variance of the estimate of x about the mean.

The conditional distribution

(72) P(B|A) ~ N(μ,Ω)

Ω is the uncertainty in the estimate μ of the mean, it is not the variance of the distribution about the 
mean.

Then the posterior distribution is specified by

(73) P(A|B) ~ N([Ω-1μ + nS-1x]T[Ω-1 + nS-1]-1,(Ω-1 + nS-1)-1)

The variance term in (73) is the variance of the estimated mean about the actual mean.

In Bayesian statistics the inverse of the variance is known as the precision.  We can describe the 
posterior mean as the weighted mean of the prior and conditional means, where the weighting factor is 
the respective precision.  Further, the posterior precision is the sum of the prior and conditional 
precision. Formula (73) requires that the precisions of the prior and conditional both be non-infinite, 
and that the sum is non-zero.  Infinite precision corresponds to a variance of 0, or absolute confidence. 
Zero precision corresponds to infinite variance, or total uncertainty.

A full derivation of formula (73).using the PDF based Bayesian approach is shown in Appendix B.

As a first check on the formulas we can test the boundary conditions to see if they agree with our 
intuition.  If we examine formula (73) in the absence of a conditional distribution, it should collapse 
into the prior distribution.

~ N([nS-1x][ nS-1]-1,(nS-1)-1)

(74) ~ N(x,S/n)

As we can see in formula (74), it does indeed collapse to the prior distribution.  Another important 
scenario is the case of 100% certainty of the conditional distribution, where S, or some portion of it is 
0, and thus S is not invertible. We can transform the returns and variance from formula (73) into a form
which is more easy to work with in the 100% certainty case.

(75) P(A|B) ~ N(x + (S/n)[Ω + S/n]-1[μ – x],[(S/n) – (S/n)(Ω + S/n)-1(S/n)])

This transformation relies on the result that (A-1 + B-1)-1 = A – A(A+B)-1A.  It is easy to see that when S 
is 0 (100% confidence in the views) then the posterior variance will be 0.  If Ω is positive infinity (the 
confidence in the views is 0%) then the posterior variance will be (S/n).

We will revisit equations (73) and (75) later in this paper where we transform these basic equations into
the various parts of the Black-Litterman model. Appendix D contains derivations of the alternate  
Black-Litterman formulas from the standard form, analogous to the transformation from (73) to (75).
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Appendix C

This appendix contains a derivation of the Black-Litterman master formula using the standard Bayesian
approach for modeling the posterior of two normal distributions.  One additional derivation is in 
[Mankert, 2006] where she derives the Black-Litterman 'master formula' from Sampling theory, and 
also shows the detailed transformation between the two forms of this formula.

The PDF Based Approach

The PDF Based Approach follows a Bayesian approach to computing the PDF of the posterior 
distribution, when the prior and conditional distributions are both normal distributions.  This section is 
based on the proof shown in [DeGroot, 1970].  This is similar to the approach taken in [Satchell and 
Scowcroft, 2000].

The method of this proof is to examine all the terms in the PDF of each distribution which depend on 
E(r), neglecting the other terms as they have no dependence on E(r) and thus are constant with respect 
to E(r).

Starting with our prior distribution, we derive an expression proportional to the value of the PDF.

P(A)  N(x,S/n) with n samples from the population.

So ξ(x) the PDF of P(A) satisfies

C.1 x ∝exp S /n−1
 E r − x 

2
Next, we consider the PDF for the conditional distribution.

P(B|A)  N(μ,Σ)

So ξ(μ|x) the PDF of P(B|A) satisfies

C.2 ∣x ∝exp −1 E r − 
2

Substituting C.1 and C.2 into formula (1) from the text, we have an expression which the PDF of the 
posterior distribution will satisfy.

C.3 x∣ ∝exp −−1  E r − 
2
S /n

−1
 E r − x 

2 ,

or x∣ ∝exp − 

Considering only the quantity in the exponent and simplifying

=−1  E  r − 
2
 S /n −1

 E  r −x 
2

=−1 E r 2
−2E r 

2 S /n −1 E  r 2−2 E  r xx2 
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=E r 2 −1
S /n−1−2 E r  −1

x S /n−1


−1


2
S /n−1 x2

If we introduce a new term y, where

C.4 y=
 −1

 x S /n−1
−1

S /n−1

and then substitute in the second term

=E r 2 −1
S /n−1−2 E r  y −1

S /n−1


−1


2
S /n−1 x2

Then add 0= y2


−1
S /n−1

− 
−1
x S / n−1


2


−1
S /n−1


−1

=E r 2 −1
S /n−1−2 E r  y −1

S /n−1


−1


2
S /n−1 x2

 y2


−1
S /n−1

− 
−1
x S /n−1


2


−1
S /n−1


−1

=E r 2 −1
S /n−1−2 E r  y −1

S /n−1
 y2


−1
S /n−1




−1


2
S /n−1 x2

− 
−1
x S /n−1


2


−1
S /n−1


−1

=−1S /n−1 [E r 2−2 E r  y y2 ]−12S /n−1 x2

−
−1
 x S /n−1


2


−1
S / n−1


−1

=−1
S /n−1 [E r 2−2 E r  y y2 ]− 

−1
x S / n−1


2


−1
S /n−1


−1


−1


2
S /n−1 x 2


−1
S /n −1


−1
S /n−1


−1

=−1
S /n−1 [E r 2

−2E r  y y2 ]
−2−22 x−1S /n−1x2S /n −2−1S /n−1−1


−2


2
S /n−1


−1 x2


2


−1
S / n−1

 x2
S /n−2


−1
S /n−1


−1

=−1
S /n−1  [E r 2−2E r  y y2 ]

S /n−1


−1 x2
−2 x−1

S /n−1


2


−1
S /n−1


−1
S / n−1


−1

=−1S /n−1 [E r 2−2 E r  y y2 ]


−1
S /n−1


−1
x−

−1
S /n−1



The second term has no dependency on E(r), thus it can be included in the proportionality factor and 
we are left we

C.5 x∣ ∝exp −[ −1
S /n−1 

−1
E R− y 2]

Thus the posterior mean is y as defined in formula C.4, and the variance is

C.6 −1
S /n−1 

−1
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Appendix D

This appendix presents a derivation of the alternate formulation of the Black-Litterman master formula 
for the posterior expected return.  Starting from formula (24) we will derive formula (25).

E r =[−1PT −1 P ]
−1

[−1PT −1Q ]

Separate the parts of the second term

E r =[ [
−1
PT


−1 P ]

−1
 

−1
 ][[ 

−1
PT


−1 P ]

−1
PT


−1Q ]

Replace the precision term in the first term with the alternate form

E r =[[ − PT [P  PT
 ]

−1
P  ] 

−1
 ][[ 

−1
PT


−1 P ]

−1
PT


−1Q ]

E r =[−[  PT [P  PT
 ]

−1
P ]][[

−1
PT


−1 P ]

−1
PT


−1Q ]

E r =[−[  PT [P  PT
 ]

−1
P ]][ 

−1 [ −1
PT


−1 P ]

−1
PT


−1 Q]

E r =[−[  PT [P  PT
 ]

−1
P ]][ [ I nPT


−1 P  ]

−1
PT


−1Q ]

E r =[−[  PT [P  PT
 ]

−1
P ]][ [ I nPT


−1 P  ]

−1
PT


−1
Q ]

E r =[−[  PT [P  PT
 ]

−1
P ]][ [ I nPT


−1 P  ]

−1
 PT


−1

−1 Q ]

E r =[−[  PT [P  PT
 ]

−1
P ]][ [PT


−1
P  ]

−1
Q ]

E r =[−[  PT [P  PT
 ]

−1
P ]][ PT

PT

−1 [PT


−1
P  ]

−1
Q ]

E r =[−[  PT [P  PT
 ]

−1
P ]][ PT [P  PT ]

−1
Q ]

Voila, the alternate form of the Black-Litterman formula for expected return.

E r =−[ PT [P  PT
 ]

−1][Q−P  ]
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Appendix E

Derivation of formula (12)

We start with the definition of the views.

(76) Q̂=Q+ϵ

Where
Q̂ is the k x 1 vector of the unknown mean returns to the views.
Q is the k x 1 vector of the estimated mean returns to the views.
ϵ is a n x 1 matrix of residuals from the regression where E (ϵ)=0 ;V (ϵ)=E (ϵ ϵ

T
)=Ω

and Ω is non-singular.

We can rewrite formula (1) into a distribution of Q̂  as follows:
(77) Q̂∼N (Q ,Ω)

We can also write our definition of the the unknown mean returns of the views based on the unknown 
mean returns of the assets and the portfolio pick matrix P

(78) P Π̂=Q̂

Where
P is the k x n vector of weights for the view portfolios.
Π̂ is the n x 1 vector of the unknown returns of the assets

Substituting (1) into (2) we get the following

(79) P Π̂=Q+ϵ

Assuming that P is invertible, which requires it to be of full rank then we can multiply both sides by
P−1 . This is the projection of the view estimated means into asset space representing the Black-

Litterman conditional distribution.  If P is not invertible then we would need a slightly different 
formulation here, adding another term on the right hand side.

(80) Π̂=P−1Q+P−1
ϵ

We would like to represent formula (5) as a distribution. In order to do this we need to compute the 
covariance of the random term. The variance of the unknown asset means about the estimated view 
means projected into asset space is calculated as follows:
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(81)

Variance=E [P−1
ϵϵ

T [P−1 ]
T ]

Variance=P−1 E [ϵϵT ] [P−1 ]
T

Variance=P−1
Ω[P−1 ]

T

using [PT ]
−1
=[P−1 ]

T

Variance=P−1
Ω[PT ]

−1

using [ A B ]
−1
=B−1 A−1

Variance=[PTΩ−1 P ]
−1

So we arrive at the projection of the views into asset space as

(82) Π̂∼N (P−1 Q ,[PT
Ω

−1 P ]
−1
)

The covariance term here is the covariance of the unknown mean returns about the estimated returns 
from the views, it is not the covariance of expected returns.
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Appendix F

This section of the document summarizes the steps required to implement the Black-Litterman model.  

Given the following inputs

w Equilibrium weights for each asset class.  Derived from capitalization weighted CAPM Market 
portfolio,

Σ Matrix of covariances between the asset classes. Can be computed from historical data.

rf Risk free rate for base currency

δ The risk aversion coefficient of the market portfolio.  This can be assumed, or can be computed 
if one knows the return and standard deviation of the market portfolio.

τ A measure of uncertainty of the equilibrium variance.  Usually set to a small number of the 
order of 0.025 – 0.050.

First we use reverse optimization to compute the vector of equilibrium returns, Π using formula (7).

(7) = w

Then we formulate the investors views, and specify P, Ω, and Q.  Given k views and n assets, then P is 
a k × n matrix where each row sums to 0 (relative view) or 1 (absolute view). Q is a k × 1 vector of the 
excess returns for each view. Ω is a diagonal k × k matrix of the variance of the views, or the 
confidence in the views.  As a starting point, most authors call for the values of ωi to be set equal to 
pTτΣip (where p is the row from P for the specific view).

Next assuming we are uncertain in all the views, we apply the Black-Litterman 'master formula' to 
compute the posterior estimate of the returns using formula (25).

(25) =  PT [P  PT  ]
−1

[Q−P ]

We compute the posterior variance using formula (30).

(30) M= − PT [P  PT
 ]

−1
P 

Closely followed by the computation of the sample variance from formula (27).

(27)  p=M

And now we can compute the portfolio weights for the optimal portfolio on the unconstrained efficient 
frontier from formula (10).

(10) w=  p
−1
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