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Abstract

In this article we demonstrate that the optimal portfolios generated by the Black-Litterman asset

allocation model have a very simple, intuitive property. The unconstrained optimal portfolio in the

Black-Litterman model is the scaled market equilibrium portfolio (reflecting the uncertainty in the

equilibrium expected returns) plus a weighted sum of portfolios representing the investor’s views.

The weight on a portfolio representing a view is positive when the view is more bullish than the one

implied by the equilibrium and the other views. The weight increases as the investor becomes more

bullish on the view, and the magnitude of the weight also increases as the investor becomes more

confident about the view.



1 Introduction

Since publication in 1990, the Black-Litterman asset allocation model has gained wide application in

many financial institutions. As developed in the original paper, the Black-Litterman model provides

the flexibility of combining the market equilibrium with additional market views of the investor.

The Black-Litterman approach may be contrasted with the standard mean-variance optimization in

which the user inputs a complete set of expected returns1 and the portfolio optimizer generates the

optimal portfolio weights. Because there is a complex mapping between expected returns and the

portfolio weights, and because there is no natural starting point for the expected return assumptions,

users of the standard portfolio optimizers often find their specification of expected returns produces

output portfolio weights which do not seem to make sense. In the Black-Litterman model the user

inputs any number of views, which are statements about the expected returns of arbitrary portfolios,

and the model combines the views with equilibrium, producing both the set of expected returns of

assets as well as the optimal portfolio weights.

Although Black and Litterman concluded in their 1992 article [Black and Litterman, 1992]:

“. . . our approach allows us to generate optimal portfolios that start at a set of neutral

weights and then tilt in the direction of the investor’s views.”

they did not discuss the precise nature of that phenomenon. As we demonstrate here, the optimal

portfolio for an unconstrained investor is proportional to the market equilibrium portfolio plus a

weighted sum of portfolios reflecting the investor’s views.2 Now the economic intuition becomes

very clear. The investor starts by holding the scaled market equilibrium portfolio, reflecting her un-

certainty on the equilibrium, then invests in portfolios representing her views. The Black-Litterman
1For simplicity, we use ‘return’ to refer to ‘excess return over the one period risk free rate’.
2Please refer to Section 2 for precise definition of a view.
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model computes the weight to put on the portfolio representing each view according to the strength

of the view, the covariance between the view and the equilibrium, and the covariances among the

views. We show the conditions for the weight on a view portfolio to be positive, negative, or zero.

We also show that the weight on a view increases when the investor becomes more bullish on the

view, and the magnitude of the weight increases when the investor becomes less uncertain about the

view.

The rest of the article is organized as follows. In Section 2, we review the basics of the Black-

Litterman asset allocation model. Then we present our main results in Section 3. Numeric examples

are presented in Section 4 to illustrate our results. Finally, we conclude the article in Section 5.

2 The Black-Litterman Asset Allocation Model

The Black-Litterman asset allocation model uses the Bayesian approach to infer the assets’ expected

returns[Black and Litterman, 1990, 1992]. With the Bayesian approach, the expected returns are

random variables themselves. They are not observable. One can only infer their probability distribu-

tion. The inference starts with a prior belief. Additional information is used along with the prior to

infer the posterior distribution. In the Black-Litterman model, the CAPM equilibrium distribution

is the prior, the investor’s views are the additional information. The Bayesian approach is used

to infer the probability distribution of the expected returns using both the CAPM prior and the

additional views.

Let’s assume that there are N -assets in the market, which may include equities, bonds, currencies,

and other assets. The returns of these assets have a normal distribution with µ being the expected
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return and Σ the covariance matrix3. That is

r ∼ N(µ,Σ),(1)

where r is the vector of asset returns. In equilibrium, all investors as a whole hold the market

portfolio weq. The equilibrium risk premiums, Π, are such that if all investors hold the same view,

the demand for these assets exactly equals to the outstanding supply[Black, 1989]. Assuming the

average risk tolerance of the world is represented by the risk aversion parameter δ, the equilibrium

risk premiums are given by

Π = δΣweq.(2)

The Bayesian prior is that the expected returns, µ, are centered at the equilibrium values, that is

they are normally distributed with the mean of Π,

µ = Π + ε(e),(3)

where ε(e) is a normally distributed random vector with zero mean and covariance matrix τΣ, where

τ is a scalar indicating the uncertainty of the CAPM prior.

In addition to the CAPM prior, the investor also has a number of views on the market returns. A

view is expressed as a statement that the expected return of a portfolio p has a normal distribution

with mean equal to q and a standard deviation given by ω.4 Let K be the total number of the views,

P be a K ×N matrix whose rows are these portfolio weights and Q be a K-vector of the expected

returns on these portfolios. That is

P ′ = ( p1 p2 · · · pK
)(4)

Q′ = ( q1 q2 · · · qK
).(5)

3The covariance matrix Σ is assumed to be a known constant matrix.
4We also refer to the portfolio p as a view portfolio.
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Then the investor’s views can be expressed as

Pµ = Q + ε(v),(6)

where ε(v) is an unobservable normally distributed random vector with zero mean and a diagonal

covariance matrix Ω.5 It is further assumed that the ε(e) and ε(v) are independent ε(e)

ε(v)

 ∼ N

0,

 τΣ 0

0 Ω


 .(7)

These views then are combined with the CAPM prior in the Bayesian framework. The result is that

the expected returns are distributed as N(µ̄, M̄−1), where the mean µ̄ is given by

µ̄ =
[
(τΣ)−1 + P ′Ω−1P

]−1 [
(τΣ)−1Π + P ′Ω−1Q

]
,(8)

and the covariance matrix M̄−1 is given by6

M̄−1 =
[
(τΣ)−1 + P ′Ω−1P

]−1

.(9)

3 The Unconstrained Optimal Portfolio

In practice, it is quite straight forward to apply equation (8) for calculating the mean of expected

returns. However, it is often difficult to find the original economic intuitions of the views from these
5The assumption of a diagonal Ω matrix is not a restriction. When the matrix Ω is not diagonal, it can always be

decomposed into the form Ω = V Ω̂V −1 where Ω̂ is diagonal. The original views can be transformed into P̂ µ = Q̂+ε̂(v),

where P̂ = V −1P , Q̂ = V −1Q, and the covariance matrix of ε̂(v) is Ω̂ which is diagonal. In fact, the assumption of

diagonal Ω matrix is not needed throughout this article. Only in the proof of Property 3.1, the Ω matrix needs to be

block diagonal. See the proof for the details.
6As pointed out by S. Satchell and A Scowcroft[Satchell and Scowcroft, 1997], equation (9) is a well known result,

despite that it is not displayed in Black and Litterman’s original papers.
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numbers, particularly when the number of assets are large. The trouble with trying to make sense

out of the expected returns of different asset classes is that they are all related to each other through

their relative volatilities and correlations. For example, it is easy to conjecture that the German

equity market will outperform the rest of European markets, but much less easy to imagine what the

implication of that conjecture is for the relative expected returns of the German and other markets.

To increase the expected return on German equities and hold all other expected returns fixed does

not, in the mathematics of an optimizer, suggest an overweight in German equities — rather, it

suggests to the optimizer that by using the relative volatilities and correlations of the different

markets it can create a much more complicated portfolio with higher expected return and lower risk

than would be available simply by creating an overweight of the German market. In the Black-

Litterman approach a view that German equities will outperform the rest of European equities is

expressed as an expectation of a positive return on a portfolio consisting of a long position in German

equities and market capitalization weighted short positions in the rest of the European markets. This

view is then translated through equation (8), which appropriately takes volatilities and correlations

into account, into adjustments to expected returns in all of the markets. As we show below, these

adjustments to expected returns are exactly those needed to suggest to the optimizer that the best

opportunity is a simple overweighting of the German equity market, financed by underweighting the

rest of European markets. These types of complex transformations, from views on portfolios to the

expected return vector, and from the expected return vector to the optimal portfolio, are generally

difficult to understand. Thus, instead of looking at the expected returns directly, we examine the

Black-Litterman optimal portfolio weights. We begin with the case of an unconstrained investor

with representative risk aversion parameter equal to δ. This portfolio gives us some very interesting

insights about the Black-Litterman asset allocation model.
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Because the expected returns are random variables themselves in the Black-Litterman model,

the distribution of the returns is no longer simply N(µ̄,Σ). According to equation (1), (8), and (9),

the distribution for the returns is

r ∼ N(µ̄, Σ̄),(10)

where Σ̄ = Σ + M̄−1.

Given the mean µ̄ and the covariance matrix Σ̄, the optimal portfolio can be constructed using

the standard mean-variance optimization method. For an investor with the risk aversion parameter

δ, the maximization problem can be written as

max w′µ̄− δ

2
w′Σ̄w.(11)

The first order condition yields that

µ̄ = δΣ̄w∗,(12)

or equivalently,

w∗ =
1
δ
Σ̄−1µ̄,(13)

where w∗ is the vector of the optimal portfolio weights. Using equation (8), the optimal portfolio

weights can be written as

w∗ =
1
δ
Σ̄−1M̄−1

[
(τΣ)−1Π + P ′Ω−1Q

]
.(14)

Note the fact that

Σ̄−1 =
(
Σ + M̄−1

)−1
= M̄ − M̄

(
M̄ + Σ−1

)−1
M̄(15)

the term Σ̄−1M̄−1 can be simplified as

Σ̄−1M̄−1 =
τ

1 + τ

(
I − P ′A−1P

Σ
1 + τ

)
(16)
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where matrix A = Ω/τ + PΣ/(1 + τ)P ′. The optimal portfolio weights, w∗ = Σ̄−1µ̄/δ now can be

written as

w∗ =
1

1 + τ
(weq + P ′ × Λ)(17)

where weq = (δΣ)−1Π is the market equilibrium portfolio and Λ is a vector defined as

Λ = τΩ−1Q/δ −A−1P
Σ

1 + τ
weq −A−1P

Σ
1 + τ

P ′τΩ−1Q/δ.(18)

Since each column of matrix P ′ is a view portfolio, equation (17) shows that the investor’s optimal

portfolio is the market equilibrium portfolio weq, plus a weighted sum of the portfolios forming the

views, then scaled by a factor of 1/(1+τ). The weight for each portfolio is given by the corresponding

element in the vector Λ.

There are intuitive interpretations of the weights in equation (18). The first term shows that the

stronger the view is (either with a higher expected return qk, or a lower level of uncertainty, i.e. a

higher value of the precision, ωk/τ), the more weight it carries in the final optimal portfolio. The

second term shows that the weight of a view is penalized for the covariance between the view portfolio

and market equilibrium portfolio. Since the market equilibrium information is already presented by

the prior, the covariance of a view portfolio with the market equilibrium portfolio indicates that the

view carries less new information and the penalty makes sense. Similarly, the last term shows that

the weight is penalized for the covariance of a view portfolio with other view portfolios. Again, since

the covariance between these view portfolios indicates that the information is in a sense being double

counted, it is intuitive that there should be a penalty on the weight associated with an increased

covariance with other view portfolios.

For an investor with a different risk tolerance, the optimal portfolio ŵ∗ can be obtained by scaling
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the portfolio w∗

ŵ∗ = (δ/δ̂)w∗,(19)

where δ̂ is the risk aversion parameter for the investor. For an investor with a fixed risk (standard

deviation) limit σ, the portfolio optimization is formulated as

max
w′Σw≤σ2

w′µ̄.(20)

The optimal portfolio w̃∗ can also be obtained by scaling the portfolio w∗

w̃∗ =
(

σδ/

√
µ̄′Σ̄µ̄

)
w∗.(21)

For an investor with other constraints on the portfolio, the optimal portfolio can be obtained by

using the usual portfolio optimization package with µ̄ and Σ̄ as inputs.

Since the weight λ on a view plays a very important role in the portfolio construction process, we

need to know when the weight is positive, and how the weight changes. The following two properties

show just what we wanted.

Property 3.1 Let P , Q, and Ω represent the K views held by the investor initially, µ̄ be the mean

of expected returns by using these views in the Black-Litterman model, Λ be the weight vector defined

by equation (18). Assume the investor now has one additional view, represented by p, q, and ω. For

the case of K + 1 views, the new weight vector Λ̂ is given by

Λ̂ =

 Λ− λ̂K+1A
−1b

λ̂K+1

(22)

where b = P Σ
1+τ p, c = ω/τ + p′ Σ

1+τ p, and λ̂K+1, the weight on the additional view is

λ̂K+1 =
q − p′ΣΣ̄−1µ̄

(c− b′A−1b)δ
.(23)
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Let

µ̃ = ΣΣ̄−1µ̄,(24)

since w∗ = (δΣ̄)−1µ̄ is the unconstrained optimal portfolio of the Black-Litterman model with the

first K views, µ̃ = δΣw∗ can be seen as the implied expected returns of the first K views, even though

µ̃ usually is different from µ̄, due to the difference between Σ and Σ̄. In the limit as τ and Ω go to

zero while Ω/τ stays finite, µ̃ and µ̄ become identical.

Since c− b′A−1b > 0, equation (23) shows that λK+1, the weight on the additional view will have

the same sign as the expression q − p′µ̃. This means that the weight λ̂K+1 is positive (negative)

when the strength of the view on the portfolio p is more bullish (bearish) than the portfolio’s implied

expected return p′µ̃. The additional view will have a zero weight if q = p′µ̃. In this case, the weights

on the first K views are identical to the weights generated in the Black-Litterman model with the

first K views.

Proof: See Appendix.

Property 3.2 For a particular view k, its weight λk is an increasing function of its expected return

qk. The absolute value of λk is an increasing function of its confidence level ω−1
k .

Proof: See Appendix.

4 Numeric Examples

In this section, we present several numeric examples to illustrate our results. In all examples the

market consists of the equity indexes of seven major industrial countries.7 The correlations between

the index returns are listed in Table 1, and the index return volatilities, the market capitalization
7We ignore the bond markets, currency markets, and other equity markets for simplicity.
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weights, and equilibrium risk premiums are listed in Table 2. The δ parameter, representing the

world average risk aversion is assumed to be 2.5.

First, let us examine the example of a view on the German equity market presented in Section 3

with the traditional mean-variance approach. Suppose the investor is not familiar with the Black-

Litterman model. Nevertheless, let us assume that she uses the CAPM as her starting point. When

she does not have other views, she assumes that the expected returns equal the equilibrium risk

premiums as shown in Table 2. As a result, she holds the market portfolio. With a view that

the German equity market will outperform the rest of European markets by 5% a year, she needs

to modify the expected returns. She might proceed as follows. To be precise in expressing her

view, she sets the expected return for Germany 5% higher than the (market capitalization) weighted

average of the expected returns of France and the United Kingdom. She keeps the market weighted

average expected returns for the European countries and the spread between France and the United

Kingdom unchanged from their equilibrium values. She also keeps the expected returns for non-

European countries unchanged from their equilibrium values. Since the equilibrium already implies

that Germany will outperform the rest of Europe, the changes in expected returns are actually quite

small, as shown in Table 3. However, the optimal portfolio is quite different from what one would

have expected: although the increased weight in the German market and the decreased weights in the

United Kingdom and France markets are expected, the size of the changes are quite dramatic. Even

more puzzling are the reduced weights in Australia and Canada as well as the increased weights in

Japan and the United States. Since the investor does not have any view on these countries, why

should she adjust the weight in these countries? Presumably it is because of the way the views are

being translated into expected returns. As we can see, the investor has already taken extra care in

her approach to translating the view into expected returns. Can she possibly do any better?
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With the Black-Litterman approach,8 the same view is expressed as an expectation of a 5% return

on a portfolio consisting of a long position in German equity and market capitalization weighted

short position in rest of the European markets. The Black-Litterman expected returns are calculated

by equation (8), and the optimal portfolio weights are calculated by (δΣ̄)−1µ̄. The view portfolio,

the expected returns, the optimal portfolio, and the deviation from her initial portfolio weights are

shown in Table 4. The optimal weight vector is very intuitive in this case. Being a Bayesian, the

investor has started with a scaled market portfolio weq/(1 + τ), reflecting her uncertainty on the

CAPM.9 Since she expressed a view on the portfolio of Germany versus the rest of Europe, she

simply adds an exposure to the view portfolio in addition to her initial portfolio, the scaled market

equilibrium portfolio. The size of the exposure is given by λ/(1 + τ). The weight λ is calculated by

the Black-Litterman model with equation (18). In this example, the value of λ is 0.302. One can

easily verify in the Table 4, the optimal deviation is exactly the view portfolio multiplied by λ.

Now, let’s assume that the investor has one more view. In additional to the first view of Germany

versus the rest of Europe, she also believes that the Canadian equities will outperform the US equity

by 3% a year. This view is expressed as an expected 3% annualized returns for the portfolio of long

Canadian equities and short US equities. Table 5 shows the views, the expected returns, and the

optimal portfolio. Again, the results clearly show that the optimal deviation is a weighted sum of

the view portfolios. The corresponding weights λ1/(1 + τ), λ2/(1 + τ) are equal to 0.284 and 0.398,

respectively. Again, the result is very easy to understand, the investor has two views, so she adds

exposures to these portfolios. The Black-Litterman model gives the optimal weights.

Assume now that the investor becomes more bullish on the Canada/US view. Instead of the

8The parameter τ is assumed to be 0.05, which corresponds to the confidence level of the CAPM prior mean if it

was estimated using 20 years of data.
9In the case of no additional views, the quantities µ̄ and Σ̄ are reduced to Π and (1 + τ)Σ.
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3% outperformance, she believes that the Canadian equities will outperform the US market by 4%.

According to Property 3.2, the weight λ2 on the second portfolio should increase. As shown in

Table 6, the value of λ2 increased from the value of 0.418 in the Table 5 to 0.538.

Assume the investor now becomes less confident on the view of Germany versus the rest of

Europe. She is only 50% as confident in the view now. The is reflected by a change of ω/τ from

0.021 to 0.043. Her view on Canada/US is unchanged at 4%. According to Property 3.2, the absolute

value of weight λ1 on the first portfolio should decrease. Table 7 shows the value decreased from

0.292 to 0.193.

Our last example illustrates Property 3.1. In addition to the two views in Table 7, the investor

has a third view. The third view is that the Canadian equities will outperform the Japanese equities

by 4.12%. But following equation (24), the implied expected return of the portfolio of long Canada

and short Japan is exactly 4.12% when the investor had two views. The expected returns of third

view portfolio matches exactly the expected returns implied by the Black-Litterman model using

only two views. According to Property 3.1, the weights on the first two views should not be changed

and the weight on the third view should be zero. Table 8 does show that the weight λ3 on the third

view is zero and the expected returns, optimal portfolio weights are exactly the same as in Table 7.

5 Conclusion

Instead of treating the Black-Litterman asset allocation model as a rocket science black box which

generates expected returns in some mysterious way, we presented a method to understand the

intuition of the model. With the new method, investing using the Black-Litterman model becomes

very intuitive. The investor would invest in the scaled market portfolio first, then add the portfolios
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representing the views. The Black-Litterman model gives the optimal weights for the portfolios.

When there are constraints, or the risk tolerance is different from the world average, one can always

use the expected returns, µ̄ and the covariance matrix Σ̄ in a portfolio optimization package to obtain

the optimal portfolio. Now, the mean of expected returns µ̄ is simply the matrix product of Σ̄ and

the optimal portfolio w∗ = (weq + P ′Λ)/(1 + τ) scaled by the average risk aversion parameter δ.

Unlike a standard mean-variance optimization, the Black-Litterman model, if properly implemented,

will always generate an optimal portfolio whose weights are relatively easy to understand.
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Appendix

Proof of Property 3.1

In the case where the investor hold the initial K views, the weight vector Λ can be written as

Λ = τΩ−1Q/δ −A−1P
Σ

1 + τ

(
weq + P ′τΩ−1Q/δ

)
.(25)

Similarly, in the case where the investor hold an additional view, the weight vector Λ̂ is

Λ̂ = τ Ω̂−1Q̂/δ − Â−1P̂
Σ

1 + τ

(
weq + P̂ ′τ Ω̂−1Q̂/δ

)
.(26)

where P̂ , Q̂, Ω̂, and Â are the counterpart of P , Q, Ω, and A in the case of K + 1 views. They can

be written as10

P̂ =

 P

p′

 ,(27)

Q̂ =

 Q

q

 ,(28)

Ω̂ =

 Ω 0

0 ω

 ,(29)

and

Â =

 A b

b′ c

 .(30)

Using equation (8), after a few steps of algebra, equation (26) can be written as

Λ̂ =
1
δ


 τΩ−1Q

τω−1q

− Â−1

1 + τ

 Pµ̄ + PΣP ′τΩ−1Pµ̄ + PΣpω−1q

p′µ̄ + p′ΣP ′τΩ−1Pµ̄ + p′Σpω−1q


 .(31)

10The assumption of diagonal matrix Ω̂ is not needed here. It only needs it to be block diagonal so equation (29)

holds.
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The inverse of Â is

Â−1 =

 A−1 + A−1bb′A−1/d −A−1b/d

−b′A−1/d 1/d

 .(32)

where d = (c− b′A−1b). Applying the last row of Â−1 in equation (31) gives the last element of Λ̂

as

λ̂K+1 =
τω−1q

δ
+

( b′A−1 −1 )

(1 + τ)dδ

 Pµ̄ + PΣP ′τΩ−1Pµ̄ + PΣpω−1q

p′µ̄ + p′ΣP ′τΩ−1Pµ̄ + p′Σpω−1q

 .(33)

After expanding the matrix multiplication and a few steps of algebra, the above equation directly

leads to

λ̂K+1 =
q − p′ΣΣ̄−1µ̄

(c− b′A−1b)δ
,(34)

which is exactly equation (23). Similarly, applying the first K rows of Â−1 in equation (31) gives

the first K elements of Λ̂ as

Λ̃ = τΩ−1Q−
(

A−1 + A−1bb′A−1

c−b′A−1b − A−1b
c−b′A−1b

)  P

p′


× Σ

1 + τ

(
δweq + P ′τΩ−1Q + pτω−1q

)
.(35)

After some simple but lengthy algebra, Λ̃ can be simplified into the following form,

Λ̃ = Λ− λ̂K+1A
−1b.(36)

Combining equation (34) and equation (36), it is easy to see that

Λ̂ =

 Λ− λ̂K+1A
−1b

λ̂K+1

 .(37)

Since matrix Ω̂ is positive definite and P̂ΣP̂ ′ is positive semi-definite, the sum of the two, matrix A

is positive definite, so is A−1. And since c−b′A−1b is a diagonal element of Â−1, it must be positive.
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Therefore, λ̂K+1, the weight on the last view has the same sign as the numerator in equation (34).

In the limit when τ and Ω̂ go to zero and Ω̂/τ stay constant, the numerator becomes q − p′µ̄.

Proof of Property 3.2

Notice that equation (18) can be rearranged as

Λ = A−1Q/δ −A−1P
Σ

1 + τ
weq.(38)

It is clear that

∂λi

∂qk
=

1
δ

(
A−1

)
ik

,(39)

in particular

∂λk

∂qk
=

1
δ

(
A−1

)
kk

.(40)

Because (A−1)kk is a diagonal element of a positive definite matrix, it must be positive. Therefore,

λk is a increasing function of qk.

Using equation (38), the partial derivative ∂Λ/∂ω−1
k can be written as

∂Λ
∂ω−1

k

=
∂A−1

∂ω−1
k

(
Q/δ − P

Σ
1 + τ

weq

)
.(41)

Because ∂A−1/∂ω−1
k = −A−1(∂A/∂ω−1

k )A−1 and ∂A/∂ω−1
k = −ω2

kιkk/τ , equation (41) leads to

∂Λ
∂ω−1

k

= (ω2
k/τ)A−1ιkkΛ.(42)

where ιkk is a matrix with 1 as the k-th diagonal element and zero everywhere else. The k-th element

of the above partial derivative is

∂λk

∂ω−1
k

= (ω2
k/τ)

(
A−1

)
kk

λk.(43)

It has the same sign as λk. For a positive (negative) λk, increasing ω−1
k would cause λk to increase

(decrease). In other words, the absolute value of λk is an increasing function of ω−1
k .
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Table 1: Correlations among the equity market index returns of the seven countries.

Australia Canada France Germany Japan UK

Canada 0.488

France 0.478 0.664

Germany 0.515 0.655 0.861

Japan 0.439 0.310 0.355 0.354

UK 0.512 0.608 0.783 0.777 0.405

USA 0.491 0.779 0.668 0.653 0.306 0.652
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Table 2: Annualized volatilities, market capitalization weights, and equilibrium risk premiums for
the equity markets.

σ weq Π

Australia 16.0 1.6 3.9

Canada 20.3 2.2 6.9

France 24.8 5.2 8.4

Germany 27.1 5.5 9.0

Japan 21.0 11.6 4.3

UK 20.0 12.4 6.8

USA 18.7 61.5 7.6
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Table 3: The expected returns, optimal portfolio weights, and their changes from equilibrium values
in the traditional mean-variance approach. The expected returns are adjusted to reflect the view
that Germany equities will outperform the rest of European equities by 5%.

µ wopt µ−Π wopt − weq

Australia 3.9 -5.1 0.0 -6.7

Canada 6.9 -2.3 0.0 -4.5

France 7.6 -50.1 -0.8 -55.3

Germany 11.5 83.6 2.4 78.1

Japan 4.3 14.9 0.0 3.3

UK 6.0 -22.8 -0.8 -35.2

USA 7.6 66.6 0.0 5.1
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Table 4: The first column is the portfolio used by the investor to express the view on Germany
versus the rest of Europe in the Black-Litterman approach. The expected return of this portfolio is
5%. The relative uncertainty of the view is represented by the value of ω/τ , which equals 0.021. The
rest of table shows the expected returns calculated by equation (8), the optimal portfolio (δΣ̄)−1µ̄,
and the deviation of the portfolio from the initial portfolio weq/(1 + τ).

p µ̄ w∗ w∗ − weq

1+τ

Australia 0.0 4.3 1.5 0.0

Canada 0.0 7.6 2.1 0.0

France -29.5 9.3 -4.0 -8.9

Germany 100.0 11.0 35.4 30.2

Japan 0.0 4.5 11.0 0.0

UK -70.5 7.0 -9.5 -21.3

USA 0.0 8.1 58.6 0.0
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Table 5: The first two columns are the two views held by the investor. The rest of table shows the
expected returns calculated by equation (8), the optimal portfolio (δΣ̄)−1µ̄, and the deviation of the
optimal portfolio from the scaled equilibrium weights.

P ′ µ̄ w∗ w∗ − weq

1+τ

Australia 0.0 0.0 4.4 1.5 0.0

Canada 0.0 100.0 8.7 41.9 39.8

France -29.5 0.0 9.5 -3.4 -8.4

Germany 100.0 0.0 11.2 33.6 28.4

Japan 0.0 0.0 4.6 11.0 0.0

UK -70.5 0.0 7.0 -8.2 -20.0

USA 0.0 -100.0 7.5 18.8 -39.8

q 5.00 3.00

ω/τ 0.021 0.017

λ 0.298 0.418
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Table 6: The Canada/US view is more bullish than the previous case. The expected returns on the
view is 4% instead of 3% shown in Table 5.

P ′ µ̄ w∗ w∗ − weq

1+τ

Australia 0.0 0.0 4.4 1.5 0.0

Canada 0.0 100.0 9.1 53.3 51.3

France -29.5 0.0 9.5 -3.3 -8.2

Germany 100.0 0.0 11.3 33.1 27.8

Japan 0.0 0.0 4.6 11.0 0.0

UK -70.5 0.0 7.0 -7.8 -19.6

USA 0.0 -100.0 7.3 7.3 -51.3

q 5.00 4.00

ω/τ 0.021 0.017

λ 0.292 0.538
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Table 7: In this case, the investor becomes less certain about the view on the Germany versus the
rest of the Europe. It is represented by the value of ω/τ being double from the value in Table 6.

P ′ µ̄ w∗ w∗ − weq

1+τ

Australia 0.0 0.0 4.3 1.5 0.0

Canada 0.0 100.0 8.9 53.9 51.8

France -29.5 0.0 9.3 -0.5 -5.4

Germany 100.0 0.0 10.6 23.6 18.4

Japan 0.0 0.0 4.6 11.0 0.0

UK -70.5 0.0 6.9 -1.1 -13.0

USA 0.0 -100.0 7.2 6.8 -51.8

q 5.00 4.00

ω/τ 0.043 0.017

λ 0.193 0.544
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Table 8: In this case, the investor has three views. However, since the third view is already implied
by the equilibrium and the first two views as shown in Table 7, the weights on the first two views are
the same as the previous case. The optimal portfolio weights in this case is identical to the values
of the previous case.

P ′ µ̄ w∗ w∗ − weq

1+τ

Australia 0.0 0.0 0.0 4.3 1.5 0.0

Canada 0.0 100.0 100.0 8.9 53.9 51.8

France -29.5 0.0 0.0 9.3 -0.5 -5.4

Germany 100.0 0.0 0.0 10.6 23.6 18.4

Japan 0.0 0.0 -100.0 4.6 11.0 0.0

UK -70.5 0.0 0.0 6.9 -1.1 -13.0

USA 0.0 -100.0 0.0 7.2 6.8 -51.8

q 5.00 4.00 4.12

ω/τ 0.043 0.017 0.059

λ 0.193 0.544 0.000
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